Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

There is a nice book by my profs (Y. Bengio, A. Courville) and a former student of the lab (I. Goodfellow) here: http://www.iro.umontreal.ca/~bengioy/DLbook/ The chapter on RNNs is pretty enlightening. You probably want to start with something the goes through feedforward networks, convolutional, etc. first though.

Andrew Ng's Coursera course does a super basic NN in MATLAB which might be good to shake the rust off [1]. Hugo Larochelle's youtube course [2], Geoff Hinton's Coursera course [3], and Nando's youtube Deep Learning course [4] are all very good. There are also some great lectures from Aaron Courville from the Representation Learning class that just finished here at UdeM [5]

If you want to do this for real (not self teaching RNN backprop on toy examples) tool-wise you generally go with either Theano (my preference) or Torch - implementing the backwards path for these (and verifying gradients are correct) is not pretty.

Theano does it almost for free, and Torch can do it at the module level. Either way you definitely want one of the higher order tools!

[1] https://www.coursera.org/learn/machine-learning

[2] https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qX...

[3] https://www.coursera.org/course/neuralnets

[4] https://www.youtube.com/watch?v=PlhFWT7vAEw

[5] https://ift6266h15.wordpress.com/



Thanks for the references!




Consider applying for YC's Winter 2026 batch! Applications are open till Nov 10

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: