Doesn't this argument prove too much? Long ago, compute was extremely expensive. The cost of compute went down, but people made tons of money selling more and more computers. The same was true for most technologies when they were first invented.
Yes, satellites are expensive compared to launches, but that's because launch costs are so high and launches are so infrequent. If you're spending the money to launch something into space, you'll also spend lots of money making sure that satellite is as reliable and as capable as possible. For example: The James Webb Space Telescope required a complex origami folding mechanism, but it could fit unfolded in Starship's payload bay. Removing that constraint would have saved the program hundreds of millions of dollars.
If the cost of something goes down, people buy more of it. This is basic economics, and it would be foolish to assume it doesn't apply to space launches. There are quite a few potential markets that would become viable if launch costs went down: space tourism, rapid point-to-point Earth transport (this would be especially useful for the military), cheap and rapid deployment of new satellite constellations, single module space stations, cheaper satellites due to fewer mass constraints, orbital radio telescopes, beamed power, space infrastructure such as asteroid harvesting, and so on. I doubt all of these things will exist in the future, but a 20x reduction in launch costs would make quite a few of them profitable. Just as how people 50 years ago couldn't have predicted all the future uses of cheap, fast computers, we can't predict all the uses of cheap, fast launches. What we can predict is that lower costs will increase demand.
More satellites == more space debris pollution, not really something I'm interested in supporting. Eventually we won't be able to safely get off this rock if there's too much space trash orbiting.
I was addressing the comment about the economics of lower launch costs, not space debris. Similar to past pollution issues, I think it will be a problem but not a show stopper. There are already global standards for satellite end of life procedures. Most governments require that satellites be able to passivate themselves so that pressure vessels or batteries don't explode and create more debris. Geosynchronous satellites are required to have extra propellant so they can move to a graveyard orbit. Many satellites are put into low orbits so that atmospheric drag will cause them to deorbit within a known time frame. And lower launch costs will make it easier to launch spacecraft that can clean up debris.
Also, reusable spacecraft such as Starship actually reduce the amount of debris created per launch, as most space debris comes from spent upper stages. Of the 25 recent debris producing events listed on Wikipedia[1], 16 were caused by debris that would not be created by a reusable spacecraft (either an upper stage, a payload adapter, or a fairing).
Unless you specifically send satellites to hunt for debris and bring it back. We have NORAD database of flying objects and Starship possibilities... hmm, I wonder if more satellites == less space debris pollution with such an approach...
These databases (which include collision risks) are public. Satellite owners use them to make maneuvers so they can avoid getting too close to debris or other satellites. Since these collision risks can be predicted days in advance, it takes very little thrust to prevent them. Even cubesats without propulsion systems can change their orbits, as their orientation affects how much drag they experience.
Yes, satellites are expensive compared to launches, but that's because launch costs are so high and launches are so infrequent. If you're spending the money to launch something into space, you'll also spend lots of money making sure that satellite is as reliable and as capable as possible. For example: The James Webb Space Telescope required a complex origami folding mechanism, but it could fit unfolded in Starship's payload bay. Removing that constraint would have saved the program hundreds of millions of dollars.
If the cost of something goes down, people buy more of it. This is basic economics, and it would be foolish to assume it doesn't apply to space launches. There are quite a few potential markets that would become viable if launch costs went down: space tourism, rapid point-to-point Earth transport (this would be especially useful for the military), cheap and rapid deployment of new satellite constellations, single module space stations, cheaper satellites due to fewer mass constraints, orbital radio telescopes, beamed power, space infrastructure such as asteroid harvesting, and so on. I doubt all of these things will exist in the future, but a 20x reduction in launch costs would make quite a few of them profitable. Just as how people 50 years ago couldn't have predicted all the future uses of cheap, fast computers, we can't predict all the uses of cheap, fast launches. What we can predict is that lower costs will increase demand.