Hacker News new | past | comments | ask | show | jobs | submit login

This argument is centered around the belief that language and reasoning flow bidirectionally- language can be understood first (we are here), and reasoning is the next natural rung of the latter (your thesis believes we will get here with LLMs).

I see language more as a medium for transcribing reasoning. While language certainly communicates reasoning, you can have reasoning without language, but not language without reasoning.

This paper seems to imply that current LLM's are just copying the training dataset's reasoning communication, not understand the actual reasoning. I don't think LLM's moving past this is "obvious" or even close to being inevitable.

> Instead, LLMs likely perform a form of probabilistic pattern-matching and searching to find closest seen data during training without proper understanding of concepts. While this process goes beyond naive memorization of words and the models are capable of searching and matching more abstract reasoning steps, it still falls short of true formal reasoning.




I realize there is subtlety to the question of which is first. An infant, crying when it is hungry and pre-linguistic, is applying modus ponens. C -> F crying implies food, so I cry and then I get fed. Language grows in humans just like arms and legs, and so does reasoning. Baby animals do the same behavior but don't use language, so perhaps some logic is wired by instinct. Either way I don't think we need to worry about that detail.

Consider how language input to an LLM is tokenized. Now imagine a tokenization scheme that introduces tokens that track the strict logical reasoning in the language. Thus two completely different English sentences could both tokenize as the application of Modus Ponens over assumption 1 to conclude conclusion 2, for example.

Now consider that we can tokenize formal notation as used in mathematics and logic, and we can train LLMs on mathematical papers, peer review write-ups, etc. We can generate millions of correct proofs and teach it which ones are remarkable and why, etc.

Ultimately we run into the same barrier as mathematical constructivists run into, but I think it's still quite plausible that LLMs trained as I describe would be able to reason quite well and find oversights humans missed. However creating the optimal scheme and implementation is not trivial.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: