I just tried finding a good resource and I can’t. All of them are mile long page scrolls… I don’t know how they have so much stuff to spew. Qiskit had amazing lessons with cool illustrations (although they did spew at the end) but I can’t even find that anymore on their site.
Don’t worry though, even the professional researchers I’ve worked with think it’s a waste of time. The field is screwed.
Here’s a quick explanation from me-
The state |x> means you have some qubits that represent the number x. Say you want to represent the number 13, that just means you have |1,0,1,1>, it just means you have 4 qubits in this configuration (quits can be 0 or 1). It’s also written |13>. If you want the state “13 AND 14 AND 15” in superposition where qubits are both 0 and 1, that’s represented by |1,0,1,1> + |1,1,0,0> + |1,1,0,1>. It’s in that superposition and can interact with itself until you choose to measure it. When you do go to measure it, you might measure any of the values (you dont get to choose which). Maybe you measure 15, that means the state is now |1,1,0,1>, you just deleted all the terms that aren’t 15.
If you look at the pic, main idea is the first layer of H’s creates the state sum_x=0…2^n-1 |x, 0>, then gate U turns that state into sum_x |x, f(x)>, then the measurements measure which f(x) you have, deleting all the terms that don’t have that f(x) in them, so for example if you measure that f(x) is 13, the state is now |0, 13> + |15, 13> + |30, 13> + |45, 13> + …
This is the periodic state. Now that we have it we can just apply a gate that takes the QFT (finds the frequency, which here turns the state into roughly |15, 13>), and then measures it, giving the answer period=15.
Don’t worry though, even the professional researchers I’ve worked with think it’s a waste of time. The field is screwed.
Here’s a quick explanation from me- The state |x> means you have some qubits that represent the number x. Say you want to represent the number 13, that just means you have |1,0,1,1>, it just means you have 4 qubits in this configuration (quits can be 0 or 1). It’s also written |13>. If you want the state “13 AND 14 AND 15” in superposition where qubits are both 0 and 1, that’s represented by |1,0,1,1> + |1,1,0,0> + |1,1,0,1>. It’s in that superposition and can interact with itself until you choose to measure it. When you do go to measure it, you might measure any of the values (you dont get to choose which). Maybe you measure 15, that means the state is now |1,1,0,1>, you just deleted all the terms that aren’t 15.
This is a full pic of Shor’s algorithm https://images.app.goo.gl/ZE5rDxHScm4LUqms6
If you look at the pic, main idea is the first layer of H’s creates the state sum_x=0…2^n-1 |x, 0>, then gate U turns that state into sum_x |x, f(x)>, then the measurements measure which f(x) you have, deleting all the terms that don’t have that f(x) in them, so for example if you measure that f(x) is 13, the state is now |0, 13> + |15, 13> + |30, 13> + |45, 13> + … This is the periodic state. Now that we have it we can just apply a gate that takes the QFT (finds the frequency, which here turns the state into roughly |15, 13>), and then measures it, giving the answer period=15.