Predictions of the solar system state are accurate only on "short" periods. The solar system is chaotic, and predicting its state after few million years is no more possible that predicting the weather for next year. This does not preclude making very accurate on short period.
Note that n-body problems are not particularly complex or hard to solve compared to other chaotic systems. In many ways, the existence or nonexistence of closed-form solutions is mostly a distraction: it merely reflects our choice of primitive functions and there is no sets of primitive functions that is stable for addition, multiplication, composition, inversion and integration. Typically, even the simple integral ∫ eˣ/x dx cannot be decomposed into more elementary functions.
But that doesn't matter in practice, because we are already using numerical approximation to compute primitive functions that are not implemented in hardware. Using numerical solvers to compute solutions to ODE is not so different. A good illustration of that point is that there is an analytic solution for the 3-body problem (in the form of an infinite series in t^{1/3}). But this solution is useless for computing orbits because it has bad convergence properties. In other words, it is better to use a numerical solver rather than stick to the analytical solution. And a similar phenomenon exists for polynomial equation of degrees 3 and 4: the exact formula is numerically unstable, and its better to use a numerical solver when one wants a numerical solution.
Note that n-body problems are not particularly complex or hard to solve compared to other chaotic systems. In many ways, the existence or nonexistence of closed-form solutions is mostly a distraction: it merely reflects our choice of primitive functions and there is no sets of primitive functions that is stable for addition, multiplication, composition, inversion and integration. Typically, even the simple integral ∫ eˣ/x dx cannot be decomposed into more elementary functions.
But that doesn't matter in practice, because we are already using numerical approximation to compute primitive functions that are not implemented in hardware. Using numerical solvers to compute solutions to ODE is not so different. A good illustration of that point is that there is an analytic solution for the 3-body problem (in the form of an infinite series in t^{1/3}). But this solution is useless for computing orbits because it has bad convergence properties. In other words, it is better to use a numerical solver rather than stick to the analytical solution. And a similar phenomenon exists for polynomial equation of degrees 3 and 4: the exact formula is numerically unstable, and its better to use a numerical solver when one wants a numerical solution.