> Abstract: Biomass-based energy storage devices (BESDs) have drawn much attention to substitute traditional electronic devices based on petroleum or synthetic chemical materials for the advantages of biodegradability, biocompatibility, and low cost. However, most of the BESDs are almost made of reconstructed plant materials and exogenous chemical additives which constrain the autonomous and widespread advantages of living plants. Herein, an all-plant-based compact supercapacitor (APCSC) without any nonhomologous additives is reported. This type of supercapacitor formed within living plants acts as a form of electronic plant (e-plant) by using its tissue fluid electrolyte, which surprisingly presents a satisfying electrical capacitance of 182.5 mF cm−2, higher than those of biomass-based micro-supercapacitors reported previously. In addition, all constituents of the device come from the same plant, effectively avoid biologically incompatible with other extraneous substances, and almost do no harm to the growth of plant. This e-plant can not only be constructed in aloe, but also be built in most of succulents, such as cactus in desert, offering timely electricity supply to people in extreme conditions. It is believed that this work will enrich the applications of electronic plants, and shed light on smart botany, forestry, and agriculture.
> FWIU, Heat-treated hemp bast fiber is comparable to graphene electrodes, and at least was far less costly because bast fiber is otherwise a waste output (and graphene at least was hazardous to produce and doesn't have a natural dendritic branch structure).
>> Hemp fiber waste was pressure-cooked (hydrothermal synthesis) at 180 °C for 24 hours. The resulting carbonized material was treated with potassium hydroxide and then heated to temperatures as high as 800 °C, resulting in the formation of uniquely structured nanosheets. Testing of this material revealed that it discharged 49 kW of power per kg of material—nearly triple what standard commercial electrodes supply, 17 kW/kg.
Would hemp ultracapacitor anodes work for aloe vera -based super capacitors? What would be the production cost and functional advantages?
> Abstract: Biomass-based energy storage devices (BESDs) have drawn much attention to substitute traditional electronic devices based on petroleum or synthetic chemical materials for the advantages of biodegradability, biocompatibility, and low cost. However, most of the BESDs are almost made of reconstructed plant materials and exogenous chemical additives which constrain the autonomous and widespread advantages of living plants. Herein, an all-plant-based compact supercapacitor (APCSC) without any nonhomologous additives is reported. This type of supercapacitor formed within living plants acts as a form of electronic plant (e-plant) by using its tissue fluid electrolyte, which surprisingly presents a satisfying electrical capacitance of 182.5 mF cm−2, higher than those of biomass-based micro-supercapacitors reported previously. In addition, all constituents of the device come from the same plant, effectively avoid biologically incompatible with other extraneous substances, and almost do no harm to the growth of plant. This e-plant can not only be constructed in aloe, but also be built in most of succulents, such as cactus in desert, offering timely electricity supply to people in extreme conditions. It is believed that this work will enrich the applications of electronic plants, and shed light on smart botany, forestry, and agriculture.