That’s an interesting assessment. Rogaway just gave a talk at RWC about APIs for secret splitting schemes. IIRC he said that the API needed to be closer to what symmetric crypto was. But from the diagram it seemed like you were obtaining some associated data back to check that the secret was correct (not sure if this would work/is relevant with more recent DKG schemes).
A signature verification returning an actual AD would be interesting as well.
EdDSA can have something close. Long story short, an EdDSA signature has two parts, often called "R" and "s". Verification works by producing a number using the public key and "s", then checking that this number is the same as "R". There are basically 3 steps:
Steps 1 and 3 are straightforward (the hash and the constant time comparison are almost always implemented in dedicated routines, tested separately). Step 2 is the most dangerous (that's where the elliptic curve magic happens).
EdDSA Implementations would be easier to check against one another if they all exposed step 2 as part of the public API. Bonus points if step 2 can handle invalid inputs (low order point, point on the twist...) in a standard manner. I haven't seen such a thing though, probably because end users never need a separate step 2.
Still, I can already envision the benefits. I'll probably use it myself.
A signature verification returning an actual AD would be interesting as well.