Hacker News new | past | comments | ask | show | jobs | submit login

> Like, I didn't understand how division works -- if someone were to ask me what (3/4) / (5/6) even means conceptually I would not have been able to provide a coherent, accurate explanation. "Uh... it's like taking 5/6 of 3/4... wait no that's multiplication... you need to flip the second fraction over... for some reason..."

In case you (or others reading this) still struggle to formalize division, a very nice way to conceptualize it is as the inverse of multiplication. This neatly sidesteps the problem of trying to figure out a clean analogue for what it means to to multiply a fraction of something by another fraction of something, since the intuitive group-adding idea of multiplication sort of breaks down with ratios.

Addition is a straightforward operation, but subtraction is trickier. For all real x there exists an additive inverse -x satisfying x + (-x) = 0. So to subtract 3 from 4 we instead take the sum 4 + (-3) = 1.

Likewise to multiply 3 by 4 we add four groups of 3: 3 + 3 + 3 + 3 = 12. We accomplish division by using a multiplicative inverse: for all real x there exists a 1/x such that x(1/x) = 1.

So (3/4) / (5/6) is equal to (3 * 1/4) / (5 * 1/6). In other words, take the multiplicative inverse of 4 and 6 and multiply them by 3 and 5 respectively. Then multiply the first product by the inverse of the second product.

This is the axiomatic basis of division as "repeated subtraction": subtraction is the sum of a number and another number's additive inverse, and multiplication is repeated addition. Then division is the product of a number and another number's multiplicative inverse. From this perspective you need not even understand division computationally if all you'll ever deal with are fractions and not decimals.




So this is really interesting, math is all about relationships, and you've got a really solid understanding of how different operations are related.


Thank you very much for this. I never realized that a) I had no idea how this most fundamental level of math works and b) that it all fits so neatly together.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: