Not necessarily. Remember, photons have mass. Sending a lot of them means you perform mass transfer. Since photons are not parallel, that transfer is not efficient. It's probably much more efficient to send a small package equipped with a large solar sail and push it from behind with a big laser until it reaches a relativistic speed, then decelerate it on the other side with another big laser.
The concept that photons are massless entities is founded in obsolete information. It has long since been determined that photons do in fact carry mass.
When photons were initially conceptualized, the capacity to estimate their mass was too small to measure and thus prove to experimentalists. Theorists, therefore, focused on other concepts and problems.
Taking a look at the link you've provided actually reaffirms this fact. Mote that it is a question from a novice, and the very first answer refutes the idea that photons lack mass.
In other words, a photon does have
relativistic mass proportional to its
momentum.
And here we have it: photons have 'mass'
inversely proportional to their wavelength!
Then simply by Newton's theory of gravity,
they have gravitational influence.
Keep in mind that the top google results for stack overflow style Q & A forums aren't always going to line up in favor of your search queries.
You should read the top answer, since it's more likely to contain reliable facts, and not presume that the ideas expressed by the question are essentially correct.
Solution 1: send information with a highly collimated laser. Assume 1 arc second divergence of the light beam and a distance to the nearest star of 1 parsec (the actual distance is 1.3). The diameter of the circle of light at the target is 1 AU. Assume there is a listening antenna at the target of the same size as the largest radio telescope today, which is 500m [1]. The ratio of the area of the telescope and the area of the light disc coming from the source laser is (500m/1AU)^2 = 10^(-17). You want to send about 1Tb/s of information. 1 bit/s requires about 4zW of power [2], so you need the antenna to receive about 10^12410^(-21) = 4e-9 W. You need to send about 10^17 more at the source, that means about 4e8W, or roughly 400MW. Let's make that 1GW, to account for various other inefficiencies. That's actually not so bad.
Solution 2. Send a package in a solar sail powered vehicle. I don't know how to do the math, but fortunately wikipedia has some examples [3]. A randevouz with Alpha Centauri for a vehicle with a final mass of 71 tons can be done in 41 years, and requires a power of 7200 GW here and 26000 GW in Alpha Centauri (for the braking stage). Let's say out of the 71 tons vehicle at the end of the trip, only 1 ton is useful cargo, and you fill that with SSD drives. Currently the largest SSD drive is about 100 TB, and it weights about 100 grams. That's 1TB/g, or 10^6 TB/ton. That's about 100 days worth of transmission at 1 Tb/s. So it wouldn't seem remotely comparable with Solution 1. However, by the time we reach the stars, I can easily see the information density going up by a factor of 10^20 or so.
So that's that. If you want to send information at limited bandwidth, you can send it using a big laser. If you can afford some latency (40 years instead of 4y), then you can send it by putting a lot of hard drives in a package.
The problem is that all light sources are to some degree divergent. You can accelerate a package to a relativistic speed over a distance of the order of 100AU, which is thousands of times less than the distance to the closest star. Consequently, the light beam that you send spreads out thousands of times less over this distance. It’s still a lot, but you have a fighting chance.
I never said it was. But it's a hell of a lot easier (to say nothing of faster and more efficient) than sending matter.