There's definitly been some ruffed feathers from the BI professionals and data analysts over the "data scientist" title. We like this band before they were popular man!
And there's some truth to the criticism that its mainly a rebranding. Someone (can't recall the source, sorry) recently defined "data scientist" as "a data analyst who lives in California."
That said even though many of the generalized tasks are the same I think there's some value to the title. There are a broad range of big pro and analyst roles that don't fit. Lots of big pros just make ssrs reports or just build star schema or look at data for insights but don't apply any hypothesis, test, repeat method.
The key differentiators for a data scientist IMO are
- can do everything required to go from piles of unorganized data to usable insights. From data munging to visualization design to programming to applying statistics correctly to analyst activities like knowing what business questions to ask
- when doing analyst work they operate using scientific(ish) methods to test and verify data hypotheses.
That describes many data analysts and BI pros that don't have cool titles now, but may soon. Recognizing the difference between people and businesses that do all of that vs report writers and ad hoc olap browsing users is valuable and positive IMO.
So, basically, you are saying that the main difference is that data scientists also make desicions based on the data, while the BI/DA works as a "data guy" for executives. Is that a correct way to put it?
In a way there seems to be a parallel between the enterprise programmer vs. hacker, and the business inteligence/data analyst vs. data scientist.
Yeah or at least the execs are saying "getting more users is important. How can we improve signups?" instead of "get me a time on signup page metric on report x."
A data scientist is like an analyst that doesn't have to go beg the tech guys to collect a new data set or build a new mining model, etc.
And there's some truth to the criticism that its mainly a rebranding. Someone (can't recall the source, sorry) recently defined "data scientist" as "a data analyst who lives in California."
That said even though many of the generalized tasks are the same I think there's some value to the title. There are a broad range of big pro and analyst roles that don't fit. Lots of big pros just make ssrs reports or just build star schema or look at data for insights but don't apply any hypothesis, test, repeat method.
The key differentiators for a data scientist IMO are
- can do everything required to go from piles of unorganized data to usable insights. From data munging to visualization design to programming to applying statistics correctly to analyst activities like knowing what business questions to ask
- when doing analyst work they operate using scientific(ish) methods to test and verify data hypotheses.
That describes many data analysts and BI pros that don't have cool titles now, but may soon. Recognizing the difference between people and businesses that do all of that vs report writers and ad hoc olap browsing users is valuable and positive IMO.