Hacker News new | past | comments | ask | show | jobs | submit login

100% agree. Most public clouds are ripoffs. We have spent 11 years on it and now thrown in the towel.

Go for some colocation facility where costs are predictable.




It depends on your use case and internal infrastructure support. A lot of start-ups start on "cloud" when they have unpredictable needs and little immediate cash for kit & sys-admins (to manage more than the bare servers: backups and monitoring and other tasks that a cloud arrangement will offer the basics of at least, will need to be managed by you or a paid 3rd party on your kit). Later when things have settled they can move to more static kit and make a saving in cost at the expense of the flexibility (that they no longer need). Or they go hybrid if their product & architecture allows it: own kit for the static work, spreading load out to the cloud if a temporary boost of CPU/GPU/similar power is needed (this works best for loosely-coupled compute-intensive workloads, which may be the case here depending on exactly what they are trying to get out of ML and what methods & datasets are involved).




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: