Hacker News new | past | comments | ask | show | jobs | submit login

> The Playstation 5. 8 CPUs at 3.2GHz each, 24GB of RAM, 14 teraflops of GPU, and a big solid state disk. That's a lot of compute engine for $400. Somebody will probably make supercomputers out of rooms full of those.

Mmm, this sounds like exactly what people said at the time the PS3 was going to be released, and I can only recall of one example where the PS3 was ever used in a cluster and that probably was not that very useful in the end.

This exactly.

The PS5 and Xbox One X are commodity PC hardware, optimized for gaming, packaged with a curated App Store.

Sony also won’t just sell you hundreds or thousands of them for some kind of groundbreakingly cheap cluster. They will say no, unless you’re GameStop or Walmart.

Everyone with a high-mid-range PC already has more horsepower than a PS5 and it’s not doing anything particularly innovative or groundbreaking.

The PS5 is going to equivalent to a mid-range $100 AMD CPU, something not as good as an RTX 2080 or maybe even an RTX 2070, and a commodity NVME SSD (Probably cheap stuff like QLC) that would retail for about the same price as a 1TB 2.5” mechanical hard drive. It is not unique.

Data center servers optimize for entirely different criteria and game consoles do not make sense for anything coming close to that sort of thing. For example, servers optimize for 24/7 use and high density. The PS4 doesn’t fit in a 1U rack. It doesn’t have redundant power. Any cost savings on purchase price is wasted on paying your data center for the real estate, no joke. Then when the console breaks you have to pay your technician $100/hour in compensation, benefits, and taxes to remove and replace it.

I think you've vastly understating current hardware prices.

An 8 core 2nd generation Zen chip appears to retail for $290. The PS5 reportedly has a custom GPU design, but for comparison a Radeon 5000 series card with equivalent CU count (36) currently retails for $270 minimum. Also, that GPU only has 6GB GDDR6 (other variants have 8GB) but the PS5 is supposed to have 16GB. And we still haven't gotten to the SSD, PSU, or enclosure.

Of course it's not supposed to hit the market until the end of the year - perhaps prices will have fallen somewhat by then? (Also I don't expect Sony to be making any money off the hardware at those prices, so I agree that they're unlikely to sell them to anyone who won't buy games for them.)

Ryzen 2nd-gen 2700 is out of stock currently, but it used to go for as low as $135-150, it's absolutely not a $290 CPU (perhaps you're looking at 3rd gen ryzen? 3700x?).

I haven't looked at what a GPU equivalent would be, but by the time PS5 hits the market, I doubt going to be anywhere near 270$.

As long as there aren't any supply chain disruptions (as there are now).

It appears that the real killer is the hardware-accelerated decompression block pulling the data straight from SSD into CPU/GPU memory in the exact right location/format without any overhead, which isn't available on commodity PC hardware at the moment.

Ack my bad! I wrote "2nd generation Zen" but I meant to write "Zen 2" which is (confusingly) the 3rd generation.

I found some historical price data and I'm surprised - the 2700 really was $150 back in January! Vendors are price gouging the old ones now, and the 3700X is currently $295 on Newegg.

As far as the GPU goes, an 8GB from the 500 series (only 32 CU, released 2017) is still at least $140 today. And noting the memory again, that's 8GB GDDR5 versus (reportedly) 16GB GDDR6 so I'm skeptical the price will fall all that much relative to the 6GB card I mentioned.

Zen2 = Ryzen 3rd, not 2nd.

> Also I don't expect Sony to be making any money off the hardware at those prices, so I agree that they're unlikely to sell them to anyone who won't buy games for them.

I think console hardware cost is generally budgeted at a slight loss (or close to break-even) at the beginning of a console generation, and then drops over the ~7 year lifespan.

> Everyone with a high-mid-range PC already has more horsepower than a PS5 and it’s not doing anything particularly innovative or groundbreaking.

The fact that it can stream 5.5gb/s from disk to RAM says otherwise. Commodity hardware, even high end m.2 drives can’t match that.

* it’s my understanding that it directly shares RAM between the CPU and the GPU which means way less latency and more throughput.

There are high end drives on the PC market what can match and surpass that, but they are like $2000+ :) Linus talked about that topic last week: https://youtu.be/8f8Vhoh9Y3Q?t=1607

Watching some of that, and doing a bunch odd reading on the PS5, it seems that “some drives” can kind of get close, but the fact that the PS5 physically has custom, dedicated hardware that can directly move data from the SSD straight into shared CPU-GPU memory with minimal input/work from the CPU, and that’s a fundamental architectural advantage PC’s don’t have (yet).

I would sure like to see some architectural upgrades like this in PC/server world though: I’d love an ML workstation where my CPU-GPU ram is shared and I can stream datasets directly into RAM at frankly outrageous speeds. That would make so many things so much easier.

While the individual components might not be as fast as a high end PC, they way the system is architected and the components are connected to each other (eg. super high bandwidth from SSD to CPU/GPU memory) gives it some advantages especially for gaming. For the price it certainly is impressive.

New console releases don't need to be particularly innovative or groundbreaking. They greatly improve the amount of the resources available to the game-devs and game development is console centric in the first place. Usually after new console launches game visual quality jumps quite noticeably in a couple of years. Its beneficial for everyone even if you are not console gamer yourself.

Faster consoles are good if your a PC gamer though since games end up deployed for all three and consoles are the retard on progress.

GTA 6 with the hardware in the new consoles will likely be spectacular.

Then when the console breaks you have to pay your technician $100/hour in compensation, benefits, and taxes to remove and replace it.

No, you pay your minimum wage junior IT assistant to unplug the broken one and plug in a new one. That's the point of commodity hardware - it's cheaper to buy and cheaper to support.

Well that just goes to show that you shouldn't trust hearsay, even if that hearsay is your own vague recollection of something. There is an Wikipedia page dedicated to the ways the PS3 was used as a cheap HP computing cluster:


The only reason that stopped happening was because Sony killed it on purpose:

> On March 28, 2010, Sony announced it would be disabling the ability to run other operating systems with the v3.21 update due to security concerns about OtherOS. This update would not affect any existing supercomputing clusters, due to the fact that they are not connected to PSN and would not be forced to update. However, it would make replacing the individual consoles that compose the clusters very difficult if not impossible, since any newer models with the v3.21 or higher would not support Linux installation directly. This caused the end of the PS3's common use for clustered computing, though there are projects like "The Condor" that were still being created with older PS3 units, and have come online after the April 1, 2010 update was released.

And in case you were wondering, the reason Sony killed was because they sell their consoles at a loss and make up for that through game sales (which indirectly is what made it so affordable for people interested in cluster computing). If the PS3 is merely bought for creating cluster computers they would end up with a net loss (Nintendo is the only console maker that sells consoles at a profit)

Are you referring to the time the US air force built a cluster out of 2000 PS3s? Seems good.

Ps3 was used as Debian clusters in my university and would be in larger scale if not for a) huge cost in my country at start b) medium availability c) "other systems" fiasco.

There was significant interest in grid scholar community.

The key differentiator is x86 vs PPC and 1 TB/s bus.

PPC was ok, the killer was that you had to write code specifically for the Cell (co)processors and their limited memory addressing if you wanted the promised compute performance.

> 1 TB/s bus

Is that the new marketing term for shared VRAM?

Most of that power came from the Cell processor, which was awesome but supposedly hard to develop for. I assume they’ve learned that lesson.

If by “learned” you mean changed focus from making it (uniquely) awesome and instead making it easier to develop for: yes.

And if by “learned”, you also mean “were convinced by Mark Cerny“ (who is still leading design of the PS5), then also yes.

Guidelines | FAQ | Support | API | Security | Lists | Bookmarklet | Legal | Apply to YC | Contact