Hacker News new | past | comments | ask | show | jobs | submit login

Yeah, I mean, at this scale you’re not going to prove how nature is from any of this. What MWI is saying is that if you admit a really difficult view of the cosmos, then you can regard the Born rule as part of Schrödinger evolution—but it is kind of only possible because you punted the details into that difficult view of the cosmos. (And then the MWI-supporters come in full force and argue that actually the view is not so “difficult” after all.)

Backing up, the problem is that you have these different approaches—depending on how you count them you could maybe group them broadly and say there are 3-4, or as large as a dozen or two—that are all mathematically identical. They all predict the Born rule, but suggest different ways that Nature really fundamentally would act to produce that rule.

Since they are mathematically identical, it is provable that there is no way to choose between them. As a result, the one which steps the most out of peoples’ ways to enable experimental results, has better “genes” for its own reproduction in the publication of papers. And that has just been the Copenhagen interpretation: you the experimentalist have a soul and when that soul measures the world the nice unitary evolution of the world comes crashing down with probabilities given by the Born rule. Contrast with pilot-wave theories where you have to work out a whole separate equation that doesn’t do anything which makes any further observational impact.

The basic issue that we are facing is that while the notion of souls seems laughable for fashionable sciencey people, it also seems in some distressing way inevitable. You take Many Worlds for instance, you admit the reality of every single possibility of the entire universe as a much broader multiverse. An equation, the Schrödinger equation, essentially works over, say, a Planck time to create a vector field on top of this, saying “This instant is followed by that instant is followed by that instant.”

In the middle of that, what uniquely qualifies my experience here and now as I know such experience must exist? I do not perceive a multiverse; I perceive a changing universe. And MWI says “well actually there are a million yous, frozen in time, all perceiving changing universes. Your experience of motion through time is actually kind of a lie.” This is not a unique problem to QM; it happened much earlier with special relativity where we discovered that you are actually a rope of worldlines thrusting through a static four-dimensional Lorentzian manifold, every part of that rope being presumably in a separate conscious state, perceiving itself as moving through time but we “on the outside” can see that there is no unique present defined such that it can wash over all of the ropes simultaneously. MWI just happens to facilitate the same basic “unrolling of time” because it has already unrolled all of possibility-space. And to fix it you need something—I’m calling it a soul, you can get fancy—which “zips along the worldline” and contains my conscious experience, or you need to argue that my experience is an illusion, or you need some “universe-soul” to act like a coherent “present moment” for all of us, or the like. It all kind of sucks.

There is a nice perspective sitting in the middle of this due to Andreas O. Tell [1], and it is pleasantly agnostic while still doing something like what MWI is doing to try and derive the Born rule from normal wavefunction evolution. In brief, he says: “use the state-matrix formalism for QM, and take a completely agnostic view of what the cosmos is and how it behaves. Still if you have a local information-processing system which is embedded in the cosmos and changing, then it receives information and must update its model of the universe. Its model of the universe must necessarily come down to a list of wavefunctions with a list of weightings, but there is a freedom-of-perspective which allows you to choose the wavefunction with the highest weight as “the” one that you think the system is in. New data just forces these weights to cross in size, causing the Born rule when you try to determine whether those weights will cross over and the system will be in the new state.”

In some sense then we can live in a very Copenhageny world where we are changing data-processors uniquely present in some space and time, but we can use Schrödinger evolution to derive the Born rule just the same as the many-worlds interpretation does, but rather than committing to its plethora of different universes we might be able to just remain non-committal about what is in the rest of the universe, beyond what I see in it.

[1] https://arxiv.org/abs/1205.0293




Another author saying essentially the same thing:

https://arxiv.org/abs/1812.06451

I actually believe that this idea has been rediscovered in it essence at least half a dozen times, going back as early as (at least) the late 90s:

https://arxiv.org/abs/quant-ph/9605002

I think it's arguable that even Everett himself held this view, and there is some evidence that Schrödinger held it as well but didn't have the courage to admit it (because he didn't have the benefit of the Aspect experiment to support it).


I have to be brutally honest here and say that I'm not inclined to spend much time understanding in detail a 16 page paper from someone who has no recognisable affiliation and a single arxiv submission that doesn't seem to have garnered much attention. Having skimmed it and what you've written, I'm quite confused about how the ontology differs from Many Worlds or what it means for "weights" to "cross in size". I think the author concedes some of the difficult in positing a "dominant reality" when they say

> Undetectable to the observer, different alternate realities can fight for becoming the dominant one, at least over a short period of time. This effect appears to be highly unsettling and not really greatly preferable to the world-splitting n the Everett interpretation


I mean I suppose it’s up to you whether you “recognize” the Universität Konstanz, but it’s a rather large place.

Tell himself is indeed not working in the field anymore—this preprint was submitted to at least one journal as I understand but was not accepted before the grant was up or so and he could no longer keep pushing for publication; instead he went into acoustic signal processing with a friend, and they both started a company called SoundTheory now. Something about trying to maximize the information “punch” of music to your brain makes it sound better or reduces background noise or something.

The paper is still interesting on its own merits though. I mean, it’s interesting to me; of course your mileage may vary.


To be clear, what is the difficult view of the cosmos?

And, what is the view of the cosmos that is not difficult? Would that be some instance of wavefunction "collapse"?


> you the experimentalist have a soul and when that soul measures the world the nice unitary evolution of the world comes crashing down with probabilities given by the Born rule.

There's a great paper by van Kampen[1] that points out that what we call a measurement and collapse of the wave function is entangling a quantum state to an irreversible statistical process. Measurement and wave function collapse are limit cases of that that are useful approximations when doing calculations.

[1]: http://www.johnboccio.com/research/quantum/notes/vankampen.p... (a version sans paywall!)




Guidelines | FAQ | Support | API | Security | Lists | Bookmarklet | Legal | Apply to YC | Contact

Search: