The part about signatures is not really correct.It says: " To sign a message, encrypt it with the private key To verify a signature, decrypt it with the public key and make sure it matches the message"This is only half true for one algorithm: RSA. But even there it's only true for something called "Textbook RSA", which is an insecure variant of RSA nobody should be using. It's not true for any real algorithm.I'm really not a fan of such sloppy "I want to explain it easy" crypto introductions that are simply not correct.(Also found it odd that he uses "Verisign" as an example for a CA. Verisign has been bought by Symantec and Symantec was distrusted by browsers recently, so it's as dead as it can be.)

 The problem is that the amount you need to teach someone in order to explain all the intricacies of a complex subject like cryptography means that it is otherwise completely impenetrable without making some inaccurate simplifications.There’s a similar problem in physics - schools still teach Newton’s laws, even though they are wrong - because they are a sufficient approximation for many uses.The problem is of course when people assume what they’ve learnt at that early level is sufficient to work with at a level that is above their knowledge - but I’m not sure what the solution to that is.
 I think there's a difference between simplifying and saying things that are wrong.You can teach people Newton's mechanics and say "this is a good approximation with a marginal error for most everyday examples, the correct way of calculating it involves very complex things."I feel the example I quoted regarding signatures is something that's not really a useful information anyway. That the RSA function works both ways for signatures and encryption is more of a fluke and not really someting you need to tell people when you explain the basics of public key crypto.
 Wow, I had never considered the conceptual difference between signing and encrypting.In the abstract 'encrypt with the private key' is a totally meaningless sentence for assymetric encryption. The entire point of a public key is decryption not encryption.I do however believe that textbook RSA signing is secure in the simplest model. It is incredibly malleable but (especially when modeling the hash as a PRF) prevents forged signatures. In that sense I'd equate calling it secure to newtonian mechanics without friction and with perfect elasticity. That is, it forms a simple teaching model, and can inform an intuition on how things work. However, no-one should build things based on the model and expect it to come out correctly.
 The problem is that RSA is somewhat unusual in that it does not really distinquish between public and private keys and the primitive operation is invertible by doing the same thing with the opposite key. That means that encrypt/decrypt/sign in the textbook aproach are essentialy the same primitive operation and verify is trivial extension.For most of other asymetric algorithms the primitive operation is DH-style key agreement function and the derived encryption and signature constructs are significantly more involved and in fact there isn't that much of an symetry between them. (and also the plain asymetric encryption operation gets somewhat pointless)
 If you want to keep things simple, then surely it is better to keep silent than to say things that are wrong.
 Thanks for the input!I used that wording since most people can easily visualize the back-and-forth of encryption/decryption. Your point makes sense; it's unnecessarily confusing and seems to suggest the mechanisms behind encryption and signatures are the same.I've edited that section to better describe what happens in practice.
 Not the only inaccuracy, PKCS#7 has been CMS for quite a while, he linked a 20 year old RFC instead...
 Technically Digicert picked up Symantec’s PKI business/customers. I’d say it’s very dead but only in the root CA sense, the business still lives on with plenty of enterprise customers paying laughable amounts for all kinds of certificates.
 I presume what you're saying is that there is a whole set of missing verification additions, but if not, what are you referring to for textbook RSA being insecure?
 You need to "pad" the number that will be signed so that it's the right size and shape to fit, or else bad guys can choose for you to sign a number that makes it very easy to find your private key by looking at the signature which is clearly a terrible outcome.Remember RSA is just very simple maths, done with huge numbers. If you pick the right "huge" numbers things that look hard become very easy indeed. So we need to ensure we never pick them.The correct way to do this, which a lot of systems haven't adopted yet, is called RSA-PSS, the Probabilistic Signature Scheme. PSS has a proof that says if you believe RSA works, and assume certain other reasonable things, this is actually safe.Before RSA-PSS (and still today in lots of backwards compatible systems), people used PKCS#1 v1.5 which has a scheme somebody threw together to do some padding but without any great insight. There is no security proof for PKCS#1 v1.5, it's probably safe, ish, but we can't be sure.
 > There is no security proof for PKCS#1 v1.5, it's probably safeAs long as you avoid the known problems, it probably is safe for signatures and the main problem now is that PSS is not included in lots of standards which thus require PKCS1_1v5. This prevents major implementation due to those standards not being updated fast enough.As an example of slow adoption: The HSMs i'm currently using only started native support for PSS last year, about 20 years after it's introduction.Please note that pkcs1_1v5 is never secure for encryption/decryption schemes.
 Textbook RSA is not secure, as there’s no element of randomness in the encryption, rendering it susceptible to chosen ciphertext attacks. RSA+OAEP includes randomness and also protects again vulnerability such as certain plaintexts always having the same encryption regardless of key.
 Does this only apply to encryption or also signatures?
 It applies to both, albeit with slightly different practical implications.
 Not the OP, but I presume they meant RSA can only be used to encrypt really short messages.More typically to sign a message, RSA is used to sign a hash of the message.
 No, they really meant you mustn't use textbook RSA. Textbook RSA is useful in a classroom (hence the name) to show how this idea works. But you can't (shouldn't) use it in production systems. In the real world use RSA OAEP to encrypt (or better, if you're an online system, don't use public key encryption at all, do key exchange with a Diffie-Hellman style scheme instead) and RSA PSS for signatures. Or don't use RSA, if you have an entirely brand new system, why not pick something more modern that has smaller keys and good CPU performance?
 > Or don't use RSA, if you have an entirely brand new system, why not pick something more modern that has smaller keys and good CPU performance?If you have (international) standards to adhere to, you are out of luck most of the time since they specify the exact schemes and cryptography required to adhere to the standard. Adoption of encryption/signature schemes is slow at best unfortunately.If you do not; go wild. If you like big keys, get some 'quantum proof' public cryptography while you are at it.
 > if you have an entirely brand new system, why not pick something more modern that has smaller keys and good CPU performance?What do you suggest here, and will it work with X.509 certificates?
 Any scheme that does signatures can be used with X.509. The way X.509 works a signature method just has an OID, and new OIDs can be minted by anyone in the hierarchy, so you could even invent your own if you were building an entirely new system.For the Web PKI, the Baseline Requirements currently permit NIST P-256, P-384, or P-521 [sic] for "Elliptic curve" public key signatures, so that would let you do this for "SSL certificates" and plenty of people do but it's not compatible with older software, so if you care about that you need to have a plan B.Depending your exact browser etcetera, if you go to google.com the certificate you're sent will be one of their P-256 certificates and your browser will verify both that this cert is genuine, and that the server can prove it knows the corresponding private key, using elliptic curve cryptography rather than RSA.
 Would you know of a good intro to pki?

Applications are open for YC Summer 2019

Search: