Hacker News new | past | comments | ask | show | jobs | submit login

> One question I had in the back of my mind when reading the book was whether any of it applied to teaching at university level. I’m still not sure what I think about that. There is a reason to think not, because the focus of the book is very much on school-level teaching, and many of the challenges that arise do not have obvious analogues at university level. [...] I think at Cambridge almost everyone would get this question right (though I’d love to do the experiment). But Cambridge mathematics undergraduates have been selected specifically to study mathematics. Perhaps at a US university, before people have chosen their majors, [...] More generally, I feel that there are certain kinds of mistakes that are commonly made at school level that are much less common at university level simply because those who survive long enough to reach that stage have been trained not to make them.

Note the "I think [...] almost everyone would get this question right (though I’d love to do the experiment)". This is a familiar state. Widespread. Call it, teachers who have not yet had their "oh shit!" moment.

One of the blog comments points at Eric Mazur's (Harvard, physics) oft-repeated talk "Confessions of a Converted Lecturer". Who describes the first time he gave students a Force Concept Inventory. Worried about wasting their time with such easy questions. :) Unaware physics education research was about to become a focus of his career.

Many have been surprised by "Minds of Our Own" (1997) https://www.learner.org/resources/series26.html The short (3 min) introductory video shows MIT and Harvard students struggling to light a bulb with a battery and a wire. Full episodes are below (by clicking on "VoD" buttons).

Harvard Center for Astrophysics has both first-tier astronomy and astronomy education programs. When meeting a new CfA graduate student, I've a little drill, prompting for the color of the Sun, and then of sunlight. They almost always get the first wrong, and then get a conflict, often with a nice "oh, wait, that doesn't make sense does it" moment. The collision of two bits of non-integrated and flawed understanding. Of the few who get it right, halfish (but small N) learned it from CfA instruction on common misconceptions in astronomy education, rather than from their own astronomy education.

But perhaps mathematics is doing better at robust integrated understanding than are astronomy, physics, chemistry, biology and medical school. It seems possible at least.

It's not just people who have had, or not had, their "oh shit!" moment. Professions too. Medicine realizing that medical errors were a major cause of mortality. Realizing even cheap easy universally-approved interventions (aspirin for ER chest pain) weren't consistently being executed. Realizing other industries had decades of experience on how to pursue quality, to which medicine had been oblivious. When the New York Times babbles about "Truth" and "The Journalism You Deserve", I shake my head and think, there's a field that has no clue how badly it's doing, how much work on process quality it's unaware of; a field that has not yet had its "oh shit!" moment.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: