Hacker News new | past | comments | ask | show | jobs | submit login

Well I think the thermodynamic analysis is useful in understanding things, that was my point. I’m not quite understanding the scenario you describe - are you asking how it is possible that you can’t heat up the target more than the origin? If so then take an example where the sun is a single point at 5000 degrees. It is easy to see that the most you could do with this point sun is heat up one point on your object to the same temperature, no more. Now what if there were two point suns next to each other? The discussion on xkcd about optics is saying you can’t superimpose the points on each other on the target under any circumstances, even with two separate lenses at the right angle. This doesn’t seem like it should be impossible though...

What about two single photon sources, can’t they be pointed at exactly the same spot? Maybe the explanation here is that the target electron cannot interact with 2 photons at the same time, so you can’t ‘double heat’ a single particle. Or maybe that you can’t precisely target a single particle without decreasing the entropy of a closed system, which is impossible.




Guidelines | FAQ | Support | API | Security | Lists | Bookmarklet | Legal | Apply to YC | Contact

Search: