			Hacker News
 new | past | comments | ask | show | jobs | submit 	
 login

			
	Succincter (2008) [pdf] (csail.mit.edu)
		
 52 points by espeed on Dec 18, 2018 | hide | past | favorite | 5 comments

			

 	
 AndrewOMartin on Dec 18, 2018
 | next [–]

 Abstract: We can represent an array of n values from {0, 1, 2} using
n log_2 3 bits (arithmetic coding), but then we cannot
retrieve a single element efficiently. Instead, we can encode
every block of t elements using t log_2 3 bits, and bound
the retrieval time by t. This gives a linear trade-off between
the redundancy of the representation and the query time.In fact, this type of linear trade-off is ubiquitous in
known succinct data structures, and in data compression.
The folk wisdom is that if we want to waste one bit per block,
the encoding is so constrained that it cannot help the query
in any way. Thus, the only thing a query can do is to read
the entire block and unpack it.
We break this limitation and show how to use recursion
to improve redundancy. It turns out that if a block is encoded
with two (!) bits of redundancy, we can decode a
single element, and answer many other interesting queries,
in time logarithmic in the block size.
Our technique allows us to revisit classic problems in
succinct data structures, and give surprising new upper
bounds. We also construct a locally-decodable version of
arithmetic coding.

			

 	
 fulafel on Dec 19, 2018
 | prev | next [–]

 Anyone know of published experiments about porting traditional apps over to succinct data structures?

			

 	
 the-alchemist on Dec 18, 2018
 | prev [–]

 Thanks, @espeed! I did a quick browse through the paper. I'm wondering why the focus seems to be on "trits" instead of bits.

			

 	
 espeed on Dec 19, 2018
 | parent | next [–]

 For more on trits, see Mihai's 2010 paper...An Alternative to Arithmetic Coding with Local Decodability (2010) [pdf]
http://people.csail.mit.edu/mip/papers/trits/paper.pdf
Changing base without losing space (2010) [pdf] https://dl.acm.org/citation.cfm?id=1806771 (same paper as above, different title)
"The ternary numeral system (also called base 3) has three as its base...a ternary digit (trit) is analogous to a bit. One trit is equivalent to log2 3 (about 1.58496) bits of information" [1].
NB: Base 3 is the integer base with the lowest average radix economy; however, base e has the lowest average radix economy overall [2].
[1] Ternary numeral system https://en.wikipedia.org/wiki/Ternary_numeral_system
[2] Radix economy https://en.wikipedia.org/wiki/Radix_economy
[3] Three-valued logic https://en.wikipedia.org/wiki/Three-valued_logic

			

 	
 dgacmu on Dec 19, 2018
 | parent | prev [–]

 Bits already have an efficient encoding in binary. ;)Representing trits (0, 1, 2) efficiently in binary is harder. (Which is the subject of the paper. It's a great paper, and we lost a marvelous mind when Mihai died.)

		

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search:

