Hacker News new | comments | show | ask | jobs | submit login
The San Franciso Fire Department makes its own wooden ladders by hand (gizmodo.com)
579 points by lisper 35 days ago | hide | past | web | favorite | 321 comments



The Discovery Channel's "Dirty Jobs"[0] show made a segment involving the SFFD's ladder construction/maintenance crew. In it, they explained that wooden ladders are cheaper to maintain than aluminum ones and I think also discount fiberglass ladders as well.

It's worth a watch if one is interested in this topic.

0 - http://www.discovery.com/tv-shows/dirty-jobs/about-this-show...


LOL at SFFD giving any shits about costs. This is the same department that power grabbed emergency medical response away from dedicated paramedics in ambulances. Responding in full ladder trucks to take care of drunk homeless people...yeah, they do that, costing millions every year in added expenses and road repairs. But good for them for saving a few bucks on ladders, that must make a huge difference.


This is part of a first responder program, occasionally saving lives. Plenty of cities across the US do this sort of thing.

If you have an emergency - especially a medical one - whoever is closest is the right person to respond, be it fire department, ambulance, or police. 3 to 10 minutes in an emergency can make a huge difference. Like it or not, a drunk homeless person is generally a health and/or safety issue. Coming in trucks that they would usually drive also means that if there happens to be a fire call while they are out helping someone with possible first aid, they can leave from the scene, keeping more people safe. For auto accidents, sometimes the fire truck is one of the better things to have at the scene for visibility purposes.

I would also like to add that many - but not all - fire departments also drive ambulances.

Does it cost money? Sure. But if it helps folks, I'm for it. There are other options, but I'm not convinced they will cost less money (more ambulances of different sorts, more manpower for first responders positioned in places across cities, and so on... all have their costs).

I'd fully recommend actually looking into the reasons for some of this, and what other options are for similar outcomes.


A lady at a bar passed out for a few seconds last week, and they sent out a full ladder truck, and ambulance, and four sheriff cars, even though she had resumed consciousness before the dispatcher was done gathering info. I would think they could have coordinated via radio and picked one vehicle to show up. A couple of the responders even seemed to be annoyed that she was conscious when they got there. That didn't seem very efficient to me.


That in itself likely wasn't. But we are human and stuff happens. We tend to notice such outliers. Having flaws and miscommunication doesn't really mean the system is all bad, though.


https://www.nytimes.com/2015/08/27/us/san-francisco-firefigh...

You're not wrong, but it's more that they are in a position to help and the city doesn't seem to want to have another organization deal with the homeless. They're not exactly gunning for the role of taking care of the homeless.


That's kind of a silly thing to say given that the government of SF spends hundreds of millions of dollars on the homeless a year.


My immediate reaction is incredulity at the notion a city could spend hundreds of millions on its homeless population and still have a homeless population...

Are there further details/good articles you would be able to provide?


According to [1], the city gets 40-50 people off the streets every week, but there are 100-150 new homeless people each week. So at that simple numbers game, the homelessness problem is not yet being solved.

You can see the budget at [2]. Most of the budget goes to Supportive Housing, ie, paying for housing for people to keep them off the street.

1: https://www.sfchronicle.com/bayarea/article/29-million-incre...

2: http://hsh.sfgov.org/overview/budget/


The common trope in LA and SF is that more and more homeless migrate to the west coast every day due to the services and weather.


Now I kind of wonder how many homeless they have in SF. Because if it's 10,000 homeless people (that would be over 1% of its 800k population), they get to spend $10,000(s) on each one ..

So either: they got a ridiculous amount of homeless people, or they got a ridiculous hole in their wallet, or the city doesn't actually spend 100s of millions on the homeless.


I feel like you could house and feed all the homeless in America with that much money.


Also from the article:

>There's a city-specific reason why San Francisco has stuck with wood rather than swap over to metals, and the answer lies in looking up. The high-voltage cables and wires that guide the city's (oft-maligned) public transport system Muni, and trolley cars crisscross above nearly every street, mean that ladders made of conductive elements are generally just too dangerous to use.

>"I think there's a lot of fire departments that went aluminum and wish they could go back to wood but it's too expensive," Braun says. "There's only two ladders manufacturers in the states—and we're one of 'em. We only make our own ladders and can barely even keep up with what we have."


I don't understand this. Fiberglass is non-conductive, so that's not really a reason to not use non-wood ladders. It is also generally stronger and more durable for the same weight.


Every fiber glass ladder I've seen has aluminum caps at both ends and aluminum steps.


As long as those steps and caps are connected with fiberglass sides, what’s the issue?


At high voltages the electricity may be able to arc between the steps. Electricity will do some pretty incredible things at high voltages. Check out this video of some idiots turning a powerline into a Jacob's ladder.

https://www.youtube.com/watch?v=-yBTHrXEK4U


At the voltage needed to arc between aluminum steps you've got a lot bigger problems than worrying about your ladder. A quick search shows overhead trolley cables deliver 600V DC. Not exactly "turning air to plasma" level there. The rest of the overhead cables firefighters should encounter are the same normal residential 34kV lines you see everywhere (data tables show an air arc distance under 2 inches) unless I'm missing something.


That video was awesome.

I'm guessing that the types of ladders SFFD are using aren’t going to be anywhere near power lines of that high a voltage.


I can't tell what, if anything, they were doing besides filming.


i think a weight tied to thin uninsulated wire, thrown like a baseball over the lines


How do other countries with OHLE cope? AFAIK, most use metal ladders. Just rely on quickly getting the wires isolated?


I think when the electrical service wires have insulation it isn't as much of an issue as opposed to the electricity driven trollies needing bare conductors.


melbourne has probably the worlds most extensive tram network, with exposed overhead wires and our fire department uses metal ladders


Having never been to melbourne how close to they run to multi-level structures? In San Francisco the wires powering trollies are practically feet from dwellings.


OHLE is specially overhead equipment like that used for trams, trolleybuses, etc. Most places I was thinking of don't have electrical supply wires overground.


Coming from NYC, it is somewhat surprising to see such anger directed at fire departments. Here, the FDNY seems universally loved.


I've got nothing but praise and admiration for the actual firefighters in SFFD. They do shit for out city that no one else wants to do and should rightfully have the same kind of admiration that FDNY gets.

But for the people running the department, specifically those in those positions in the early aughts (naughties?) who maneuvered to eliminate dedicated paramedics from the city, I've got nothing but hate. I had friends who were part of ambulance crews who were forced to either transition into being full-fledged firefighters or get let go and have to look for work in neighboring cities. None of them wanted to run into burning buildings, so they all left. It was a nonsensical decision to gain political power and ended up increasing costs and negatively impacting a lot of other highly dedicated folks who should receive similar amounts of praise. First responders of all sorts, whether they be police, fire fighters, paramedics or otherwise, are always taking risks to help the rest of us.

I'd hope that New Yorkers would have similar admiration for the folks in ambulances that also put their lives on the line to help their fellow citizens. Now imagine that some fucks at the top of the NYFD decided to fuck over the ambulance personnel in an attempt to gain more political clout while simultaneously wasting a ton of taxpayer money doing nonsensical things like needlessly sending the large 2-driver firetrucks to the scene of medical emergencies. Then how would you feel about NYFD? You'd probably feel the way I do about the SFFD and draw a clear distinction between the men and women who actually put on a uniform and serve their community and the bureaucrats at the top who are wasting our money and destroying our roads.


I don't think its anger. It's just that police and fire departments have garnered this "can do no wrong" mindset to the extent that trying to fix what they actually do wrong (waste money) has turned into a political third rail.

Fewer fires but larger departments [0], 6-figure trucks driving to fender benders, pension spiking, minimum staffing requirements & huge overtime pay (union-negotiated), etc.

Look, I appreciate what first responders do. I just don't think they're above reproach.

[0] https://www.washingtonpost.com/opinions/2015/09/04/05316abe-...


There was that time an _on-duty_ firefighter was drunk driving the rig, hit a motorcyclist and everyone involved tried to cover it up, including fleeing the scene. He didn't get questioned by the police for hours.

https://www.sfgate.com/crime/article/Former-SF-firefighter-g...


Consider the impact of 9/11. Prior to that, FDNY was of course well-liked, but not to the incredible degree it is today. The role they played in the response, and the heavy losses they suffered when the towers fell, resulting in a huge outpouring of grief, support, thanks, etc. It's still going today. Other fire departments perhaps benefit a little from that, but not to same degree as FDNY.


It’s also a function of the job - people don’t hate them because the vast majority of their work is non-confrontational and they don’t pose a risk to citizens (write tickets, arrest people etc) so most people are happy to see them when they arrive somewhere they are needed. Put it another way - I’m willing to guess that a large percentage of people here have had or witnessed a negative interaction with a police officer, and far fewer could say the same of a firefighter or EMT...


TBH I am from the Bay Area, work in SF, and I have never seen ire like that directed at SFFD before. I wouldn't take this example as representative or common.


The LAFD might be the most admired municipal organization in the city. They have a very difficult range of environments and handle them very well.


From afar it seems the LAPD has a horrible reputation. So the LAFD must seem like saints by comparison.


Can confirm. Grew up in the area. Lots of neighbors, family and friends are FDNY. Everyone loves them.


I'm a transplant, but in my casual observations living here it seems like SFFD is pretty impressive and worthy of respect. I've seen neighbors call for minor issues, the response time has been very good and the calls taken seriously. It's almost as if they're keeping cultural memory of 1906 alive, i.e. they really don't want widespread fires.


SF in general seems to be more vitriolic towards public services. Might be the entrepreneurial mindset of the region rubbing off.


I am not sure what you are referring to. I was involved in a motorcycle accident in October of 2017 and I was treated by SFFD paramedics in an ambulance.


The fire department does have some ambulances, but they still respond to non-fires with fire engines as well. Prior to the unification of services, non-fire medical emergencies were serviced by ambulances and EMTs were not required to be firefighters. Now, all EMTs have to be firefighters. I had friends who lost their jobs when the switchover happened because they didn't want to train as firefighters.


Why does the fire department respond to a medical emergency?


US fire departments are classed as "first responders", with a service level requirement that they normally arrive on-scene within minutes, usually long before police/ambulance/etc.

It makes sense to staff FDs with EMTs and give them responsibility for responding to all manner of emergencies (medical included), since they are already the first responders.


Often this is because many firefighters are also certified EMTs. So sometimes, it’s just easier to have the fire department respond.

That being said, I live in a rural state where this makes sense. I cannot imagine the crowded streets of SF are good for this.


Because “fire department” is the label put on the general purpose non-law-enforcement emergency response unit of most local governments.


Often times fire engines and trucks are staffed with 3 EMTs and at least 1 Paramedic. Then the ambulance with 2 paramedics, or 1 paramedic 1 EMT arrives.

It's all about level of care. Overkill for a twisted ankle sure but crucial for a cardiac or other life threatening event.


They do in most countries actually. There's a lot of similarity in the skills you need.


Don't most countries have a separate ambulance/paramedic service for medical emergencies? Certainly in the UK we have fire, police and ambulance as the three emergency services, one (or more) of which will be sent by the dispatcher following a 999 emergency call. I think most commonwealth countries are the same.


Because Ambulances tend not to carry the kind of heavy duty cutting equipment required to get people out of mangled cars


I don't like this type of argument. Dollars saved are dollars saved, even if there are bigger problema that could be solved


Another one of his shows, Somebody's Gotta Do It is also worth a watch http://mikerowe.com/shows/somebodys-gotta-do-it/s308/


Americans seem to take a lot of pride in their fire brigades - their fire engines are still shiny and polished with more traditional signage and the fire fighters still wear helmets with their traditional shape.

In the United Kingdom they wear more simple uniforms and the engines are just a box shape with no bells any more - seems a shame.

Usually it's UK the has more ceremony in these kind of things.


One of the biggest differences between Europe and North America in this regard is that in European cities, emergency vehicles have to be designed to fit a 1000-year-old city in terms of width, turning radius, maximum weight, etc. This leads to a much more compact shape and shorter wheelbase.

In North America streets are designed to fit emergency vehicles. You're not allowed to build a street so narrow that a fire engine couldn't turn around there, for example.


You should see some streets in San Francisco. No way that a fire engine is fitting on those.


The narrowest street in San Francisco is roughly a regular European street. This[1] is par for the course on most European cities, while San Francisco has very few streets narrower than this[2] (and the average is probably wider, if you look anywhere westwards of Park Presidio where theoretically two way streets are wide enough for traffic to continue flowing in both direction even with double parked trucks.

I would also point out that I'd prefer narrower streets in SF[3].

[1]: https://www.dreamstime.com/stock-photo-narrow-san-francisco-...

[2]: https://www.google.com/maps/@37.7998615,-122.4141133,3a,75y,...

[3]: https://www.theguardian.com/cities/2015/may/08/san-francisco...


Just as a side point... A lot of architects like this idea from an aesthetic or architectural-sociological reasons.

Living in em.. these as houses don't give you a lot of privacy. People walk by, less than a meter from where you're sitting. They sometimes stop to look at your TV.

You get used to it, but it's not the kind of thing people go looking for on purpose.


Put stores or offices in the ground floor. Or have a raised ground floor.


Or just embrace it, like the Dutch do[0].

[0]: https://stuffdutchpeoplelike.com/2010/11/24/no-8-not-owning-...


I like the half basements, but they have their issues: http://copenhagenbydesign.com/blog/2015/5/21/half-up-and-hal...


They do, they have the trucks were the rear wheels can turn as well


Every time I see them I still think being the rear driver of a ladder truck is the best job ever.

You have your own cabin, you wear a headset. And you only work when making a turn.


A truck being small is not incompatible with a truck being a beautiful shade of red polished to a shine. Just look at Japanese firetrucks. They have some very small trucks that look great.



Honestly, from quickly looking at some images of UK firefighters, it seems the difference to me is that their equipment is modern, an not just in a design sense. Their helmets look better designed to protect the user and their fire engines look like they weren't purchased in the 70's.

So maybe the difference is that in the UK, they don't have to use old equipment


Maybe I'm not looking at the right pictures, because a quick Google Images search for "uk firefighters" and "us firefighters", I see no functional difference in what they're wearing, and the only difference in the firetrucks is that American firetrucks are massive bricks and UK firetrucks are either a European-style truck that looks basically the same as a US-style truck or are a Ford Transit van with some hoses.

The helmets look exactly the same except the ones in the UK don't have brims on the back.


They keep the engines shiny for multiple reasons. First, what else are you going to make the rookies do? ;-) Actually, keeping them shinny requires someone to pretty much go over every inch of the truck which is also a great time to do an inspection of the truck. Finding out something needs attention while sitting idle in the station is much better than finding out while out on response.


You should see the fire engines in mountain towns. They look like monster trucks.


Does each town fund and buy their own? Maybe that leads to more pride and respect for the equipment.


yes - in many American small towns there is a what's often called a fire district that levies a small tax (often a property tax)that funds the fire department (which typically a volunteer force)


I'm not sure about local funding (I think there's a certain amount of state and county funding as well). I'm sure that differs for each one. They also often staff the fire department with local volunteers. I have a couple uncles that did this for years in a very small town (~600 people). The fire department was mostly used for preventing/stopping wildfires in the surrounding area (which occur fairly often). When I've visited in the past they would give us tours. They had mostly military vehicles which could make it over the terrain (the gama goat was pretty interesting) and a regular engine (which I believe was a hand-me-down from another city). They were proud of what they were doing there to help protect the community.


guessing this also has to do with the fact that most American homes are single-family wood framed structures, so the relative importance to people is perhaps higher.


> the fire fighters still wear helmets with their traditional shape.

The helmets are practical. They're basically construction hard hats with a rain brim.


I didn't say they weren't practical.


I mean, why would the shape change?


Because you can always improve on a design.

Here's the modern helmet maker for the UK fire services: http://www.rosenbauer.co.uk/equipment/helmets/


Yes, since the tasks and material change.

Modern materials are lighter and more stable, thus need less material, which gives more flexibility to move.

Also the tasks changed. These days there are less fires, but more kinds of "technical assistance" and when there is fire water usage is more targeted and restricted.


I don't know - I'm not in charge of the design of fire helmets in the UK am I. I just know they changed and it's a shame it's not the iconic old design we had.


This is a weird statement. Do you also find it's a shame airplanes are no longer the iconic tail dragger with huge propellers?

Iconic british firefighter helmet use to be leather than metal. There are very good reason why they have been changed. The wikipedia page explains the differences over time and culture:

https://en.wikipedia.org/wiki/Firefighter%27s_helmet


I'm pretty sure that was a rhetorical question.


InnoGraft.


Not really. Most firefighters in the US are volunteer, so not enough pride to pay people to do it.

In big cities, it's more of an internal camaraderie thing. They live together, cook together, shop together, etc. A lot prefer being at the station with their 'brothers' to being at home.


Most firefighters in the US are volunteer, so not enough pride to pay people to do it.

Having a volunteer fire department does not mean there isn't pride.

In fact, it can be argued the opposite -- Volunteer departments mean the citizens take enough pride in their brigade that they get directly involved in it, rather than farming it out as a civil service.


I think there is a big difference between the pride of individual being a firefighter (many people feel this and are willing to take the job with no pay or benefits even though firefighters are at risk for a whole range of occupational induced diseases) and the pride a community feels for an organization and their willingness to support them.


Some communities simply can’t afford to pay a fire brigade, hence a volunteer squad where everyone chips in.


They can pay for it. They just don't want to increase taxes.


The tax base just isn't there sometimes. I've seen community budgets where everyone is hanging on by a thread. Not quite as bad as Native American reservations, but up there.


Sure, many communities have that problem. But I think there are at least some where that would not be the case anymore if they raised their tax rates.


There are plenty of communities in America that have professional fire departments. Particularly cities where there is actually a tax base to support it. You'll find volunteer fire departments in pretty much any working class town where the manpower is capable and willing but the money is lacking.


Yes, I am aware. But, again, the money is lacking in part because there is no will to raise taxes.


Absolutely. Look at Long Island, NY. There are a number of communities with the wealth to transition to professional fire brigades, but the property taxes are already high and the political leanings run conservative.


For most small towns I think its more the fact that a fire is a pretty rare occurrence (a couple call outs a year with a major fire every few years) so its more of a cost/benefit decision - they're willing to add ~5 min to the response time for a rare event in order to deploy $1m+/year to other higher priority areas


In the UK the majority of firefighters are on retainers, and will spend a few hours a week training, but otherwise just rely on pagers. They're paid a few thousand per year plus hourly and callout rates.


Which is the model for volunteer firefighters in the US (minus the hourly compensation/annual stipend) otherwise its essentially the same.


Volunteer firemen in the US certainly do get paid, or at least reimbursed. They're not working for free. And places with volunteer fire departments aren't volunteer because there's no pride, they're volunteer because there aren't enough fires to warrant paying people full-time to sit around doing nothing. They're on-call, and they get paid to respond to fires. In the meantime, they go to their normal job that also pays them money.


I think you are overgeneralizing. In the two places I'm familiar with, rural North Carolina and rural Wisconsin, "volunteer firemen" are truly unpaid volunteers. You are right that others are paid for their time, but it's not universal. Here's a Straight Dope thread that talks about the different approaches in some different places: https://boards.straightdope.com/sdmb/showthread.php?t=658416


Around here, the state government subsidizes volunteer companies for equipment and facilities, and the fire district can bond with public votes that attract fewer voters than school board elections. My dad lives in a town with 250 annual callouts, a $10M firehouse and two $300k fire engines.

In the city that I live in a few miles away with a paid department, the firehouse next door does like 6,000 calls a year with a 2005 truck with 200k miles on it.


Many volunteer firefighters are just as well provisioned and with as many amenities as fully paid ones, at least in many suburbs.


I can't think of any reason to acclimatize them this way instead of kiln drying/vaporizing them (depending) to roughly the right moisture content and waiting for 1% change (instead of kiln drying them to 0, or waiting forever for completely green wood)

There are studies going back to the 70's by the forestry service (and others) showing there is no change in mechanical properties of pine/fir from these drying schedules.

(This is not true of a lot of hardwoods, but is true of these softwoods)

Waiting years seems like a pointless waste of time.


The material they show in the article is massive. Thick, long and heavy. Even if there are kilns big enough, the wood would no longer be straight after a fast kiln drying.

A 50' 3x3" board would be twisted and bowed so much that the ladder would be a spiral staircase.

It doesn't matter for 20' 2x4 destined for a construction site.

Even if the wood was kiln dried, it would still have to acclimatizate for months or years before it would be at a stable 13% humidity of San Francisco.


"The material they show in the article is massive. Thick, long and heavy. Even if there are kilns big enough, the wood would no longer be straight after a fast kiln drying."

This is not true, depending on timeline. It's true of the production rate kilns, and as you say, it doesn't matter for construction lumber, which is why they do it.

But assuming 3+ years to dry your 3x3" board, even doing it in a kiln at a 6 month rate (or whatever) would be a vast improvement, and would basically not bow or check. Again, there is actually a vast amount of research on drying schedules vs defects and how to optimize for whatever you want for a given wood species.

As for kiln size, again, solar kilns are quite trivial to build for basically any size or shape, and can easily be temperature controlled for something like this. (and they could easily build a kiln in the space they have shown in that article)

To whit: I've built a solar kiln in maryland for 30+ ft boards before, and cost of materials was < $1000. (I used to buy lumber from a guy who was responsible for handling downed trees for some cities in northern virginia, and he used to saw and sell the lumber. He did the nail removal, etc)

"Even if the wood was kiln dried, it would still have to acclimatizate for months or years before it would be at a stable 13% humidity of San Francisco."

Why? You can just stop drying it at 13% (instead of the 7-8% that is normal).


These ladders last decades so presumably most of the shop work is in maintaining existing ladders, not in pumping out lots of new ones.

It would be a waste of time and money to kiln fire the wood for 6 months when you can just order it 1-2 years in advance and leave it in the corner to accomplish the same purpose.


"These ladders last decades"

Then literally this entire process is a complete waste of time, because they will never stay at any moisture content over this time period.


The point is to bring them to the natural moisture content due to the average San Francisco humidity. Once they are there they will stay there because the average humidity is relatively constant.


I understand the goal (I've been woodworking for 20+ years).

Wood does not react to average humidity, it reacts to current humidity.

Defects occur because of sudden changes the wood cannot "handle" (IE it's not elastic enough, etc), not because the average is too high or low.

Over decades, the likelihood of that happening seems quite high.


I believe the article said the ladders were sealed with multiple coats.


> Waiting years seems like a pointless waste of time.

They have a long running stock. They are not wasting time anymore, they may be wasting storage though.

Something could be said about the stock fire risk exposure, but hey, they are the firemen after all.


It probably is a waste of time, unless time is not a critical factor. If time is not a critical factor, it'd be a premature optimization to bother with a kiln.


The stockpile is "tiny" so I guess it doesn't really matter unless they are running low on material.


Doesn't make sense to put the capital forward for a kiln if they don't need it!


A solar kiln costs just about nothing (less than a thousand bucks, easy)


Still more time and money than stacking boards in the back of the shop.


> "I can't think of any reason to acclimatize them this way instead of" ....

I bet the expert woodmakers doing this job have very good reasons. Reasons that you haven't thought of..

Seriously, these people are experts. They probably know their job, really, really well.


"I bet the expert woodmakers doing this job have very good reasons. Reasons that you haven't thought of.. Seriously, these people are experts. They probably know their job, really, really well."

This is just a random appeal to authority. If you would like to be constructive, please be constructive.

First, there is one person doing this. Or was. It was Jerry Lee, who recently retired. He did it for 30 years.

In fact, for giggles, i reached out this morning, and Jerry Lee says he is not an expert by any means in any of this. He was just a pattern maker who thought he could be helpful. He had no particular expertise in this when he started, and he would argue he is in fact, not an expert.

When I asked, he said they just didn't need to do it faster.

So it turns out no, they aren't magical experts trained in the artisanal art of ladder making with information passed down from the ages, and no, there are no magical reasons that only the wood cognoscenti have thought of. Sorry.

They just use the forestry handbook data and info like everyone else!


> When I asked, he said they just didn't need to do it faster.

There is your really good reason.


Isn't a forestry handbook a "random appeal to authority"?


At the point where one of us literally called up the dude who was doing the work and asked, can we dispense with the message board rhetorical kung-fu and just have the rest of the conversation? Thanks.


Actually, no, it's a very very very well thought out resource that has references to where the research comes from and citations for it's data.

It may come as a surprise, but this really is engineering. People have been studying wood as an engineering material for a very long time, and there are a large number of published studies on pretty much anything you can think of from drying rates to density to you name it.

Take a look at https://www.fpl.fs.fed.us/products/publications/several_pubs...


I'm not sure how many degrees of separation this knowledge is from programming, but it's got to be one of the highest values I've ever seen on HN.

Bravo.


It's funny how well this kind of lowbrow snark works here until exactly the moment it totally doesn't.


I've been woodworking heavily for 20+ years, and actually have run 3-4 kilns. Just FYI.


FYI hobbies and dayjobs are not legally mandated to be correlated.


If you get a chance to visit a Smokejumper base, I highly recommend it. One of the things you learn is that everyone on the team is required to make all of their own equipment by hand. So all of these highly trained, ex-military guys spend days on end doing nothing but sewing clothes and packing parachutes. The reasons described:

- Cheaper than contracting out everything

- They have a better idea of the exact specifications they need for everything

- It instills a strong culture of self-reliance and trust (anyone has to be able to pack your parachute)

- It fills a lot of offseason downtime

My takeaway is that it makes a lot of sense to in-house your own tools - a lesson from outside of the software industry.


It makes sense for a job where 95% of the time is spent waiting for an emergency to react to.


> a job where 95% of the time is spent waiting for an emergency to react to.

this describes quite accurately the work of many people maintaining computer systems


I must be maintaining the wrong systems, because over here 95% of the time is reacting to emergencies (some technical, but most fabricated by management)


I had it like that at my last job. It was technical issues every day. The teams were spending at least half their time just troubleshooting.

Nobody wanted to rip out the old problematic systems and start over. So I left. You should do the same. Plenty of jobs out there where you can grow and actually build high quality solutions.


I doubt you're working on the wrong systems, but working for the wrong people.


I've spent a couple hours every morning the last eight Tuesdays explaining to a customer that the software that they purchased from us, and installed on their servers, goes down for a few minutes at 1:00 AM because their server team is rebooting those servers to apply updates. Every week, same time, same issue, same cause, same review and root cause analysis demanded. Fixing broken processes in broken companies is 1000 times harder than anything else in software.


First thing that came to my mind too!

I've had two "Please call me, it's broke" calls just this morning!


Why does your manager know this before you do though?


It could be the case that nothing is actually broken. I have unfortunately received a number of similar calls on systems that were working exactly as specified. Random nonsense "disasters" can happen a lot in dysfunctional companies.


I would never in a million years, as a developer, give my personal phone number to a client. That's probably why.

I get the same issue where I work. The client states that "everything is broken," but it often turns out that their own servers are down (or sometimes our API guys made a breaking change and I wasn't informed, but that's not common anymore). I find this stuff out when I get to work in the morning, because they certainly aren't calling me directly.


I think the implication is that the system should alert you directly. Though if you are building systems for clients to run, you obviously would want the system alerting them, not you.


It's actually the opposite way around for me, but I fill a senior role that intersects directly with high-value vendors. I'm basically on-call 24/7 and I am in the office whenever I feel like it or when I need to work on code.

I log my interactions with my supervisor, he will occasionally check with me to follow up but I can fix 99% of what they call me about on my own. If I need help, it's usually just expert knowledge that I can ask around the office for.

But of course other devs have different roles and workflows.


You're assuming 1) there's a legitimate technical problem and 2) the person calling is management and not a user


Maybe but don’t tell their managers who would then layoff the 95% thinking they’re making the team 100% efficient and then wonder why things went to hell in hand basket.


a retired police officer once told me that the quantity of officers citywide goes through a repeated cycle from low to high to low again.

when the number of officers is too low and there's too much crime, the people demand that the government hire more.

so government does that. and crime goes down.

then the public notices all these police officers "doing nothing" and complains about wasted government resources.

so, naturally, they demand a reduction in the number of officers.

and so it goes...


This is a common phenomena, and I'm not sure if there's a general term for it. E.g. people prematurely stop taking antibiotics because they feel better, or people go off their meds because they feel fine, etc.


I'd say this is best described by the concepts from control theory. In this case it really reminds me of bang-bang control: https://en.wikipedia.org/wiki/Bang%E2%80%93bang_control and in particular, the failure state that it can result in when applied in the real world: "depending on the width of the hysteresis gap and inertia in the process, there will be an oscillating error signal around the desired set point value (e.g., temperature), often saw-tooth shaped." In this case, there is a ton of hysteresis and inertia in the process, and by golly, the sawtooth is what you get... more officers this year, more officers next year, more officers after that, maybe it tops out a bit, and then BANG big cut.

It doesn't perfectly apply because technically, the system does not merely have two states, but the failure state is still very reminiscent of what is described here.

As kcorbitt points out in a sibling comment, differential equations are also a very powerful mechanism for understanding these phenomena, even when they are continuously approximating a discrete function like "number of police officers". Unfortunately, the standard treatment of this incredibly practical and important topic in college is terrible, and people come out with no understanding of how important it is to understanding the real world. As a really simple example, anywhere you can find a -dx^2/dt^2 term, you are almost certain to experience oscillations; they can be drowned out but it takes a lot, to put it in intuitive terms. With so many such terms in the world, there's a lot of oscillations that you simply can't avoid. I tend to believe our economy oscillations more than it absolutely has to for various reasons, for instance, but the idea I've sometimes seen proposed that it shouldn't oscillate at all is impractical. Too many terms like that in the world.


It is really painful sometimes to navigate life and witness the complete lack of understanding of control systems shown by the designers of many essential pieces of basic infrastructure from roads and parking all the way up to the banking/financial system.

Another common lack of understanding that is particularly prevalent within middle management is the trade-off between efficiency and resilience, the application of this to the finacial system is discussed at length in [0].

[0]http://www.lietaer.com/images/Sapiens_text_final.pdf


We should use a PID controller to set the number of cops. Where number of cops is the control variable, and crime rate is the process variable ;)


Also a common pattern in biological ecosystems. Great weather one year leads to lots of fresh grass around, so more rabbits than usual survive to adulthood. An abundance of rabbits leads to more foxes than usual surviving. But the next year the increased fox population over-hunts the rabbits, crashing their population, and the next winter the underfed fox population crashes in turn, allowing more rabbits to survive to adulthood... etc. etc.


The Lotka-Volterra equations are a simple and popular mathematical model of this kind of dynamics:

https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equatio...


Not finishing the course of antibiotics is the spicy-hot take:

https://www.bmj.com/content/358/bmj.j3418


It strikes me as some type of attribution error. Not the FAE we all know, but a different or more general one. As in, results are not attributed to the cause.

But in the antibiotics example, it's the other way around. The results are ignored in spite of the cause ("I feel better, therefore I'm done"). That one could also just be regular old ignorance, but that's a boring topic of discussion.


In biology this would be the red queen phenomenon. Wolves bring down the rabbit numbers, wolves starve, rabbits flourish, wolves flourish, wolves devour rabbits, and so on.


I assume you're getting downvoted because the Red Queen hypothesis actually applies to a scenario where neither wolves nor rabbits change their numbers significantly. Perhaps a better description would be along the lines of: Wolves get better eye sight, so rabbits get better at camouflage, so the wolves get better smell, so rabbits get better at hiding in inaccessible areas, so wolves get thicker coats to dig into the briar patch, etc. This year's model of wolf or rabbit is more fit than last year's model, but is never able to gain a lasting advantage over the wolves.

As the Red Queen said to Alice in Through the Looking Glass, "Now, here, you see, it takes all the running you can do, to keep in the same place."



in control theory this is called stable equilibrium

https://en.wikipedia.org/wiki/Stability_theory


Because crime is directly caused by the lack of police officers there to "prevent" it. &eyeroll&


here's a little supporting evidence, but, I freely admit, it's from a mostly rural country many people consider barbaric: http://www.cbc.ca/archives/entry/1969-montreals-night-of-ter...


I have yet to ever meet a bored sysadmin/DevOps/systems engineer. There is never, ever enough time in the day for those roles.


This was me working as an information security analyst. Just waiting for a security incident. Then my manager realized I had a lot of downtime and put me to work doing compliance reports as well, then wondered why when a security incident happened the compliance reports stopped being generated.


I have heard the same about anesthesiologists. 99% boring routine and 1% sheer terror.


And your life depends on your gear.


Not true, especially in big city departments. Sure there are days when you run 3 or 4 calls and you get a lot of downtime, but most departments run 3000 or more calls a year. Do the math.

But yeah utilizing their downtime is smart. And you're gonna build a damn good ladder and not cut corners if you know you're going to be standing on it.


> Sure there are days when you run 3 or 4 calls and you get a lot of downtime, but most departments run 3000 or more calls a year.

3000 calls a year is about 8 calls a day. Assuming the 3000 calls/year is per station, and not per dwpartment, that means a station responds to a call, on average, once every three hours.


Also factor in most of those calls during the morning and evening, follow-up paperwork time, daily equipment checks, and station maintenance. If you cut the timeframe down to 12 hours busy window, that's 90 minutes per call. Throw a good call in there and they stack up. In my experience, a 24 hour shift with 8-10 calls is just about the max to handle before burnout.


There's a similar phenomenon in the military - a lot of any soldier's time is spent maintaining their gear, moving/packing supplies, etc.


No way. It makes sense way more times than that.


The San Franciso Fire Department is using wooden ladders due to an abundance of overhead power lines.

Which I think is the core issue, use other peoples tools unless you have some critical and unique requirement.


I think the low yield strength of aluminum also plays a role here, as one guy mentions. But I’m surprised thermal conductivity didn’t rate a mention.

There was a time when aluminum bikes were new but before the parts likely to bend were replaceable where many a bike owner had to buy a new frame due to misadventure. You can only bend aluminum once, then you’re done. When they started making cogsets with more than six gears they went with axles about half a centimeter wider, and you had a similar conversation. You can have the longer axles but you can’t change your mind after. They have to bend the stays slightly and there is no going back after that (and let me tell you, the mechanic got really quiet when they did the bend. You want to get it just right and every bike and every frame size is different. You pull until you feel the metal just start to give and just after that is your 5mm)

Steel frames could often be rebent. But they’re heavier and they don’t like moisture. And their strength to weight ratio is only about the same as wood. Probably also bad options for firefighters.


There is actually a company that manufactures very high-performance bicycles out of hardwood:

https://renovobikes.com/pages/why-wood

They cost a pretty penny, such that I would be afraid of losing or damaging them.


Also bamboo bikes: https://booomers.com/


The other property of aluminum that is relevant for some uses (but likely not ladders for most uses) is that, unlike steel, it doesn't have a well-defined fatigue limit. Therefore, it can eventually fail after a large number of even relatively small loads that don't visibly deform the material. That's one of the main service limits on airframes.


Definitely true. Steel will stretch or bend if overloaded but aluminum is brittle enough that it will break once but without any warning of fatigue that may have occurred.

Now, in this case I wouldn't want to use steel, because it rusts and is heavier and neither are good for fire fighting.


There's a cyclist saying: steel bends, aluminium breaks, and carbon fibre shatters.


So I wonder why fiberglass ladders are not used?


Heat deteriorates fiberglass


Have they solved the UV problem at least? Even full sun used to eat fiberglass.


Yes, with coating. Millions of fiberglass boats out there going with less maintenance than their wooden predecessors.


Do you have any data to detail this? Fiberglass is glass fibers + resin. Decent resin doesn't melt or become weak with normal heat, it just thermally stresses at some point (we're talking > 180C at which point a wood ladder would be on fire). Wood also has issues with heat - it expands, which can cause buckling and cracks. I'm trying to find fiberglass temperature-strength data to figure out why it's not used in fire ladders and am coming up short.


As far as I can tell after some brief googling when I saw this article earlier today: 1. Fiberglass ladders tend to use polyester resin. 2. polyesters tend to have a glass transition temperature (i.e. where the polymer starts to become soft and lose its shape) in the 75 to 125C range.

Wood combustion temperatures are typically about twice that. Also, incidental heat contact can char the surface of the wood and leave it mostly structurally intact.


The choice of resin can be accomodated, using polyamides as a matrix with suitable glass (some low-temperature types might not work), or with carbon fibers, should allow ~400°C/ 670K as a usage-limit. If it were to be coated with e.g. CVD SiO2 or something similar, it could have a pretty high reflectivity in the higher-temeperature thermal radiation range of light (where most of the radiation heat from a fire is in).

The mentioned charring is a very important property in buildings, as solid (hard-)wood pillars have astonishing endurance in a full-scale fire, due to them smoldering slowly from the outside in, compared to e.g. steel framing that quickly softens throughout. One additional factor is evaporative cooling/associated covering with mostly inert water vapor due to the water contained in the wood and the water released from the cellulose fibers upon thermal decompositon.


They could buy wooden ladders, so I don't think that paints the whole picture.


Article says they are one of two wooden manufacturers in California.


s/California/United States/;


> They could buy wooden ladders

Can you point me to someplace selling 50' wooden ladders appropriate for firefighting?



We have 3 of their library ladders at home. They're nicely made.


San Francisco is listed as a client


For the right money, you can find the right ladder. It's not going to be cheap though, because you have to age the wood.

I wonder if there is a way to age the wood to SF humidity/climate faster than real time. Just feels like there has to be.


You can dry wood faster. Lots of woodworkers build little makeshift kilns by stickering the wood inside an enclosure with a fan and, optionally, using the sun or an electric heater. Temperature control, sticker spacing, and proper stacking is key so it takes lots of experience if you don't want to lose too much wood to warping, checking, etc.

And 13% moisture is relatively high. Kiln-dried hardwood for furniture is sold at about 8-10% moisture. Dried construction lumber is usually sold at about 19% moisture--just below the point which inhibits mold growth.[1] Heck, some of the construction-grade lumber at a big box store might already be at 13% just from sitting around for months inside the store. (Though they stack them poorly and this is one reason why the pieces are often so warped.)

I assume that they keep the pieces around for so long simply because they can. If your time horizon is decades, then you lose nothing by simply stacking the wood (without much stickering) and letting it sit. That doesn't take much effort, just patience. And considering how expensive and rare such long, defect-free pieces are, why risk losing pieces? I have no doubt they could dry the pieces faster, but they have better ways to spend their time. Their only immediate responsibility is to keep the years-long pipeline of wood filled.

[1] On the East Coast with a more humid climate, homebuilders purchase pre-dried lumber for framing. On the West Coast with a much dryer climate, builders traditionally buy wet wood for framing and the wood usually dries to <= 19% by the time they begin finishing the interior. (Wood primarily shrinks tangentially and radially, not longitudinally, so drying framing in place isn't usually an issue. See http://www.wood-database.com/wood-articles/dimensional-shrin...)


You can also stick them in a room-sized microwave oven operated at rather low frequencies, to get deeper penetration into the wood and dry it from within. If you do that with whole logs, you should be able to cut them to be straight in the dry state.

This takes in the order of days, not years, without damaging the structural integrity by chemical decomposition that starts at relatively low temperatures.

If you are in a hurry, you can also put something like burnt lime in the chamber as that chemically captures the evaporating water without releasing it in these conditions. That way you can keep the humidity under 5% during the process if you spread the lime enough to capture the water as fast as it is driven out of the wood. You need to be careful to not burn the wood, but you should be able to use something from FLIR with some computer vision to check that no lumber overheats. The water also increases the absorption a lot, so this provides feedback that equalizes the humidity, instead of e.g. a runaway heating that would happen if dryer wood absorbs more microwaves.


Hell, for the right money your in house staff might make the right ladder for you! ... wait.


You can use a kiln, which is how most timber is dried these days.

If you're feeling bored, the Wikipedia article on wood drying is very comprehensive: https://en.wikipedia.org/wiki/Wood_drying


Kiln drying doesn't produce ready to use lumber for fine woodworking or demanding applications. It's fine for construction material but needs additional seasoning and acclimatization in the environment it's going to be used in if it's to be used for anything else.

Fast drying will also introduce stress and warping to the wood. It would not work when long straight and thick material is needed.


Pressure? But it’s going to be mighty expensive to build a pressure chamber that big.


Negative pressure might be more useful. Boil out the water under half an atmosphere, and replace the atmosphere with dried nitrogen and a chunk of desiccant.

You'll probably damage the wood if you do that though. Now I want to try it in my vacuum chamber, but I'm not sure it'll hold vacuum for weeks/months at a time.


Just use a pipe with conductive plating on the inside and operate it in the 3-digit MHz range as a waveguide. Make sure that the core of the wood has more power than the outside, and that you e.g. move it around lengthwise if you get longitudal resonance in the pipe. Add some desiccant, and make sure the way you couple the energy into the chamber can handle this resonance without frying itself through reflection. Might not need the vacuum, but it should be easy to construct it in a way that it can hold a vacuum of around 10~200 mBar, e.g. with a simple one-stage pump. If you make sure the pump doesn't take in much moisture, there shouldn't be an issue for it.


What pressure do they need, a length of pipe might do?


- a lesson from outside of the software industry.

Not really, just a forgotten one. Fred Brooks described his ideal development team in The Mythical Man Month and it included a toolmaker.


That was also written before there were many commercially available tools. (Still a great book!) Perhaps tool specialist is more important today?


I believe a toolmaker on a team is still critically important. I have yet to see a team or organization that doesn't have a suite of (often poorly maintained) custom tooling that automates things together or provides functionality critical to the business.


Interestingly the more critical these tools are, the less maintained they will be.

They often fall in the middle of everything, and there is no set team to handle them (“everyone’s responsible”). Then as they’re critical, someone can’t just take half an hour to do a quick fix, it must be reviewed (and no one actively wants to review it, as it’s not trivial and not their job —- cf “everyone’s responsible —-). Plus anyone succesfully fixing them will be flagged as a potential maintainer when everyone else is running away.

Internal tooling in software companies is a beast in its own.


the toolmaking, that is being discussed here, is not generic, but very specific to the business. tool specialists today are probably even more important, because "we" (collective IT industry) became carried away with frameworks and lost ability to solve simplest problems by hand (the infamous 'leftpad' comes to mind; or was it rightpad?). writing small, targeted, fast code that solves specific business problem is the lost art now.


For what it's worth, every rated parachutist packs their own parachute. For the reserve chute, it's always packed or repacked by an FAA certified rigger, which is an incredibly high bar by comparison. They must be repacked every 6 months.

The estimate is that on average a parachute will fail one in a thousand times, mostly due to packing error, seldom due to equipment failure. Maybe 90/10 ratio.

For a reserve, the expectation is that they would fail less than one in 10,000 times they are deployed. Which means that, collectively, avoidable errors should only happen one in every million or so rides on a parachute. This is less often than the real observed rate (1 per 75k or so), but errors other than packing or equipment failure are often the root cause.


According to Wikipedia, it varies. Some organizations don't require the jumper to pack their own parachute. What does seem to be a common principle is that "All riggers are jumpers and can be asked at any time to jump with a parachute they have packed." or in the US military, that any rigger has packed, without knowing who. http://en.wikipedia.org/wiki/Parachute_rigger


Yep. It's not really that you have to pack your own parachute, more that it's cost and convenience to do so, so it's pretty universal as far as I am aware. I'm not certified or anything but I've jumped a few times and that's what the 10k+ jumpers said at the time.


My takeaway is that there are benefits to in-housing your own tools, not that everybody should.

There's also a middle-ground available in the software industry: reading the code of the open-source tools you use. You can understand how your tools work without rebuilding them from scratch. Also, if you're using open-source (which most people do these days), the "cheaper" argument doesn't apply.


Those smoke jumpers aren’t making their own nuts and bolts, ropes, cloth, or felling their own trees. They’re making tools by assembly. Many of us work the same way.

From what I understand every master craftsman has a small quantity of tools they either made themselves or at least modified to purpose. Tools with bits added on or ground off (eg, wrenches ground thin for tight spots, or magnetized).

I class jigs as a separate category but I have no handy parallel for software.


> From what I understand every master craftsman has a small quantity of tools they either made themselves or at least modified to purpose.

I could argue editors we all use for coding are tools that we 'made' by assembly. My set of plugins and settings is different from the next person.


Utility functions and small self-contained libraries. Nice thing about software jigs is that copying them is free, so often they’re open-sourced.


A software equivalent to jigs, might be something like specialized project templates available in IDEs and the like.


I remember reading in a Navy Seal's memoirs that when training to be a sniper, they were all responsible for making their own camouflage suits. The point being that when you're out in the open, you have to know how to make use of what's around you to camouflage yourself.



I do question this a little bit. One of my hobbies is racing sailboats, which doesn't have quite as exacting requirements as fighting wild fires, but it still requires specialized gear. I could not for the life of me make the splice required for a particular component on my last boat. It always looked good, but it inevitably failed after a few days of racing. When I bought one from an expert it would last for years.

Craftsmanship matters and you just won't become an expert building exactly the number that you need for yourself.


A related anecdote: There was for a long time, a history of students in certain disciplines such as physics and some areas of chemistry, making their own tools and equipment. My dad had to build an NMR as part of an analytical chemistry course. I built an exceptional amount of gear for my graduate research project. Of course there's the bit about using cheap labor.

But a side result is that you have a chance of actually understanding how your tools work, which is beneficial when developing new tools or when the tools stop working.


It's called scientific glass blowing, and is a pretty interesting field that highlights some of what has to go on in the background for scientific research to progress. Some other reading:

0. https://blogs.scientificamerican.com/symbiartic/httpblogssci...

1. http://www.latimes.com/local/education/la-me-caltech-glassbl...

2. https://news.usc.edu/114014/uscs-scientific-glassblower-lets...


Nottingham University is looking for one for some years now. Mentioned in one Numberphile video.


That might have more to do with 1)students being cheap & 2)researchers often needing custom equipment that is unavaliable commercially. I know the justification given for undergrad chemists learning glassworking was the expectation that as professionals it would be a required skill.


It was for my dad. He was doing vacuum line work, so he pretty much had to do his own glasswork, because his requirements would change from one experiment to the next. Same as why a lot of scientists do their own programming.

In my own case it was because instrumentation was the thing that I was ultimately interested in, and the expertise that I developed in grad school got me going in my career. The stuff that I built was on top of the roughly half million dollars worth of commercial equipment that I used.


Situation here is of real world which is different from software world. Real world equipment can degrade/develop faults after use so its important to inspect them before each job(especially when risk associated are very high) which is possible only when person is familiar with equipment construction and building things yourself is the best way to get familiar with its mechanics.Whereas in software world, things don't degrade with use and we have option to automate inspection cheaply.


There is one extremely good reason for packing your own parachute yourself.


There's an old saying among firefighters: "The fire service is 200+ years of tradition, unimpeded by progress". Now obviously that isn't strictly true, and SF does have some good reasons for sticking with their wooden ladders... but one can't help but suspect that sheer tradition is a somewhat significant factor.

Of course some departments adopt change faster than others, and some kinds of change are adopted more readily, so it's hard to make any sweeping generalizations.


> one can't help but suspect that sheer tradition is a somewhat significant factor

Only if you didn't read the article.

"There's a city-specific reason why San Francisco has stuck with wood rather than swap over to metals, and the answer lies in looking up. The high-voltage cables and wires that guide the city's (oft-maligned) public transport system Muni, and trolley cars crisscross above nearly every street, mean that ladders made of conductive elements are generally just too dangerous to use."


And only if you're also about 40 years behind ladder tech - notice the stepladders in the "A view of the main repair facility" photo?

They're nonconductive fiberglass.

They're stronger than wood, lighter than wood, don't need to be oiled/varnished, don't require cutting down old-growth trees, and aren't susceptible to moisture damage.

You can buy them exhaustively tested, mass produced, in whatever quantities you require for a couple hundred dollars - probably an order of magnitude less than these artisanal wooden ladders.


>They're nonconductive fiberglass

They're also not being used right next to flames.

Yes, fiberglass can be made that won't buckle under both weight and heat, but not at the same price point as wood.


Because wood reacts so well to fires?


Oddly, yes. Sufficiently dense wood takes a lot to ignite and burns quite slowly, and I assume they coated it to make it even harder to get started.


Can fiberglass ladders be refurbished and used for decades, or do they weaken and need to be replaced as the epoxy ages? Does the cost of replacement outweigh the cost of refurbishment?

How about the aluminum cross braces of your fiberglass ladder, how do those hold up in the high heat of a structure fire? What does that do to service life?


I would bet another advantage of wood is they fail gracefully.

From article:

"We had one ladder here that was fully involved in a fire for 25 minutes, and the whole tip of it—six feet—was crispy. It looked like a log you pull out of a campfire," Braun says. "That can't go back in service but we were curious, so we put a new halyard [rope used to hoist ladders] on it for a load test. Even in that condition, it passed."


Yep. That's one of the reasons wood also makes a great construction material.


I would add that aluminum ladders tend to be bouncy because there's very little mechanical damping. I've climbed 30' aluminum ladders and in the middle it's like being on a trampoline. You have to go slow. Wood ladders seem better for racing up and down.


There are plenty of ladders on the market that are non-conductive. None of them are wood because wood is conductive. (though wood does have some interesting fire properties that probably make them better anyway)


In fact in the article, the way the wood is tested for moisture content is with a conductivity test.


How conductive? I'd expect dried wood would have a pretty high resistance.


Only if you didn't read the article.

Did you read the comment you're replying to? I said very specifically "SF does have some good reasons for sticking with their wooden ladders". And note that I said "a somewhat significant factor" NOT "the only factor" or even "the biggest factor".

In fact, I did read the article, and I see nothing that contradicts the suggestion that tradition is "a somewhat significant factor" in their continued use of wooden ladders.


> Did you read the comment you're replying to?

Yes.

> I said "a somewhat significant factor" NOT "the only factor" or even "the biggest factor".

That's true. But even "somewhat significant" isn't justified by the facts.

> SF does have some good reasons for sticking with their wooden ladders

And they have one overwhelming reason: aluminum is not an option because of the overhead muni lines.

So it's possible that tradition has a role, but there's no evidence that it is even "somewhat" significant.


And they have one overwhelming reason: aluminum is not an option because of the overhead muni lines. So it's possible that tradition has a role, but there's no evidence that it is even "somewhat" significant.

If you're operating under the assumptions that A. all the relevant information is in the article and B. everything in the article can be taken at face value, then I can see how you would arrive at that conclusion. So fair enough. I didn't mention it earlier, but I'm operating from a place of applying additional knowledge and perspective that comes from over a decade as a firefighter.

Anyway, I doubt we'll ever really know for sure. In either case, SFFD do a great job, so mad props to them regardless of what kind of ladders they use.


It doesn't explain why they couldn't just buy wooden or fiberglass ladders though. I'm sure there are many vendors who would be happy to fill such a contract.


Wood doesn't fail suddenly. Fiberglass does.


So why don't they buy wooden ladders?


According to the article this is one of two places in the entire country making these ladders.


What kind of ladders do the power line companies use?


I work at a power company. For portable ladders, we use both wood and fiberglass. However we don't fight fires so we don't take fire or heat ratings into consideration and we maintain a minimum distance of 10' (or OSHA minimum approach distance for qualified electricians/linemen) between a ladder and anything energized.


What kind of ladders to the power line companies use?

Doesn't matter. The electric company isn't hanging on the outside of a building that's on fire.


No, it does matter because everyone on this site is a genius and the firefighters don't know what the hell they're doing.


It's interesting, and I wonder to what extent sticking to tradition like this also helps them stick to tradition with regards to values. I mean, obviously, not all values from 200 years ago are worth hanging on to, but I see the firehouse as a place of mutual respect and trust and understanding. I wonder how much of that culture would fade if they just threw everything away and replaced it, had a purchasing department, etc. (for example).


This is where some of the real value of tradition lies. It's in the art of handing something down from mentor to protege, the time spent learning the craft, learning respect for what was done before, true appreciation for labour and effort.


I'm not sure why, but I'm reminded of that scene in Gangs of New York where two fire brigades show up to a house fire and proceed to duke it out over who has rights to put it out and plunder the building. The building ends up burning down.

aplusbi 35 days ago [flagged]

I hope we someday return to this Libertarian dream world.


Please don't post unsubstantive comments here.


Favorite excerpt:

"We had one ladder here that was fully involved in a fire for 25 minutes, and the whole tip of it—six feet—was crispy. It looked like a log you pull out of a campfire," Braun says. "That can't go back in service but we were curious, so we put a new halyard [rope used to hoist ladders] on it for a load test. Even in that condition, it passed."


Wood is a surprisingly good building material for surviving fires. A nice thick wooden beam can take days to burn through in a house fire where e.g. a metal support would yield as soon as it gets hot enough.


Great read, but loved the end -

""Pete has collected all these different donuts over the years. They're all real, and covered with lacquer so they won't go bad. Some of these are ten years old.""


Impressive collection but I only see a waste of a good donut!


I never knew we had so many experts on firefighting among us to tell us why this makes no sense.


> There's a city-specific reason why San Francisco has stuck with wood rather than swap over to metals, and the answer lies in looking up. The high-voltage cables and wires that guide the city's (oft-maligned) public transport system Muni, and trolley cars crisscross above nearly every street, mean that ladders made of conductive elements are generally just too dangerous to use.

I wonder how it's done in European cities with their trams (the ones which don't use APS).


Fiberglass, probably. Which is what SF should be doing.


You see this is what I don't understand.

Here lies a pretty cool article about a pretty cool practice demonstrating how the SFFD maintains their own equipment, to their own specifications (rather than an approximation thereof), and for less money than simply farming it out to a vendor. There might even be an applicable (to HN) lesson here on the value of employing an in-house toolmaker, whatever your profession may be.

And then there's this lot here in the comments that is completely in arms against it because le Hackernews is obviously an expert Fire Brigade, or just has an allergic reaction to civilian government agencies maintaining their own equipment versus joining the throwaway consumerist cult the rest of world has acquiesced to.


I think a big part of it is a tendency of tech/engineering sorts to have an allergic reaction against any sort of tradition. Old fashioned is worse than uncool, it's dumb and outs you as an inferior mind to the engineering who is always rational and pragmatic and has no time for tradition.

In other words, it's a social disorder.


https://www.sfgate.com/bayarea/article/SAN-FRANCISCO-Firefig...

"[wood ladders] don't conduct electricity like aluminum or wet fiberglass ladders do."

"'Aluminum or fiberglass, when it gets too hot, it gets soft; it will actually fold over without any warning,' he said. 'Wood takes hours to fail completely -- enough time for a firefighter to see it burning and get off it.'"

"Once an aluminum or fiberglass ladder cracks, it usually has to be replaced. Wooden ones can always be repaired, he said."


How does fiberglass stand to high heat?


I looked up g11 and g10 for their structural heat limits, because I know they have a higher heat resistance than most fiberglass, and are limited to around 150c/ 300f. I looked up what a typical house fire burns at which is 600c/1100f.

This is actually a great case where asbestos shines. It's nonconductive and can stand very high temperatures. If not for the whole cancer thing.


The fibers aren't that big an issue. If you want better heat tolerant fibers you can use basalt fiber.

The problem is the matrix, which softens under heat unless you use exotic things like ceramic matrix composites which are brittle.


Some casual googling earlier suggests to me that fiberglass ladders are fiberglass/polyester, not fiberglass/epoxy.


> This is actually a great case where asbestos shines.

Asbestos is heavy as rock.


Asbestos is rock.


And rock is as heavy as rock.


Most ladders are fiber glass - which makes me wonder why any off the shelf ladder wouldn't suffice.


The film industry uses almost exclusively fiberglass as well. There's no shortage. They're swimming in those things. I would bet their lifespan is shorter than the wooden ladders, however. At least from what I've seen.


Fiberglass is reinforced plastic, though, so that might explain why it isn't used in FDs even if it's heavily used in other domains. How well does it hold up to heat? How does that exposure effect it structural properties? I honestly don't know and don't have time to look it up, but I could see thermal plastic deformation over such a long run as potentially hazardous.


Could be. I know film shoots can end up occurring in all kinds of weather (especially here in Canada), and often the ladders will be sidled up to large sun lamps (which I can assure you get very hot), and in electrically-compromising situations, but all of those are very different from an actual fire.


Wow. I wish I had time in the day to look at NFPA (Nat'l FIre Protection Assn) standards. 1931, 1914, and 1911 seem pertinent - this is clearly something that many people have devoted a lot of time and energy to.

edit: http://tkolb.net/safety/LadderSafety/LadderSafety.html ... can't vouch for site but interesting.


We use them because they are osha mandated, and have to be rated for like 350lbs. And aluminum will just kink and bend the first week on the job.

Huge downside to fiberglass is they are UV sensitive - i've seen ladders just crumbling because they were left in the sun


I worked for a supplier to the industry for a little while heading an electrical department, but spent some time in hardware maintenance as well. I saw plenty of those things nearly bleached white if they lasted long enough.


In my experience aluminum is more common than fiberglass.


Indeed, .fiberglass is very light and the SF wooden ladders must be so damn heavy!

More

Guidelines | FAQ | Support | API | Security | Lists | Bookmarklet | Legal | Apply to YC | Contact

Search: