Hacker News new | past | comments | ask | show | jobs | submit login

Thank you for providing these links. Some people, especially on HN, seem to be surprised how far GCM modeling for exoplanets has gone.

Besides the examples you mention, research groups are now doing data assimilation for Mars (https://www2.physics.ox.ac.uk/research/geophysical-fluid-dyn... https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/201...). Other groups are testing and improving models for Jupiter and Saturn, as you mention, based on various remote sensing observations. (For Saturn, see: https://theoryofclimate.sciencesconf.org/conference/theoryof...).

All of these cases have allowed modelers to observationally test their models and model physics against non-Earth conditions. This work has been going on for a decade now, but it somehow has not reached the technically-aware audience.

The case of tidally-locked planets is another step beyond the above solar-system planets. Thank you for the references you supplied, in your original comment, on GCMs for this case.

I think Jerf's point is that for systems that complex, it is more sane to expect that we will be off by a lot. Remember that weather casting is frequently wrong in your own city.

I enjoy modeling, and I think it's useful, interesting as well as respectable work. But a little humility would in science is always a good things.

I don't think this is a good take. Firstly, we're discussing climate, not weather, which is easier to predict than chaotic swirling fluids. Secondly, if we were basing a practical decision off this information, then we should apply some kind of higher threshold, but this research is essentially a discussion piece and it seems pretty plausible that this might be the case on some worlds.

Regardless, it's more useful to point to particular areas of uncertainty than to point to a general miasma of uncertainty around climate modeling as though nothing can be learned. It doesn't really move any conversations forward.

Weather forecasting (short term details) may be wrong, but climate modeling (long term trends) is generally correct.

Just because we can't predict when an individual hurricane will occur doesn't mean that we can't predict "hurricane season".

Climate modelling on Earth generally refers to the scale of tens or hundreds of years, not to billions of years. Our climate model for the next few billion years is essentially "Eventually the sun will turn into a red giant". And we live here.

edit: Apparently it's not even certain whether the Sun will engulf the Earth or not!

Guidelines | FAQ | Support | API | Security | Lists | Bookmarklet | Legal | Apply to YC | Contact