No, this won't help with finding primes. As they noted, the pattern for ranges of size k only holds for k lines. So to find a prime of length N (on the order of 2^N), we need to have k=O(2^(N/2)). However, this yields a guarantee that a prime lies in a range of size O(2^(N/2)), which is not particularly useful. We get exponentially better probabilistic results from the prime number theorem.
I was initially thinking the same, but I don't think that's the case. This will help you find a small range of six potential primes (pick any element on the left edge of the triangle). But you're still required to calculate the factorizations on those six numbers to determine which of them are indeed prime.
If so this could be a huge blow to security.
But I must say this is amazing that they were able to visualize prime numbers in this way. These guys are geniuses.