Hacker News new | past | comments | ask | show | jobs | submit login

Seems like a Carmichael number could be a good choice for an attacker. This would make your chances of encountering a Carmichael number quite high. You have to consider who's choosing the number. Or do I have it wrong?



Only the simple Fermat tests are vulnerable to Carmichael numbers. The test which is used in practice, Rabin-Miller, is not vulnerable to them. In fact, if you assume the extended Riemann hypothesis is true, (log n)^2 iterations of Rabin-Miller are sufficient to prove primality.


How efficient might this be compared to other approaches for searching for Riemann hypothesis counterexamples? Is there a one-to-one relationship between direct Riemann counterexamples and composite numbers that pass (log n)² Rabin-Miller tests?


I am not familiar with all the ways the GRH can be disproven, but Miller-Rabin doesn't strike me as the most efficient, with its running time of O((log n)^4) for each attempt. I am not sufficiently competent to say whether a GRH counterexample also directly results in a MR counterexample.


In addition to what pbsd said, Carmichael numbers are incredibly rare. Your odds of stumbling across one by chance are lower than the odds of a cosmic ray flipping the bit of memory that causes you to believe you have stumbled across one, as I recall.




Guidelines | FAQ | Support | API | Security | Lists | Bookmarklet | Legal | Apply to YC | Contact

Search: